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Indices

n normal to stream surface

t tangential to stream surface

o reference position in flow field, eq. [4]
x,V,2 direction of coordinates

1. Introduction

Extensional flows are important in many
processing operations, for example fiber spin-
ning, foaming, blow molding and flow in die
entrances. Extensional flows are also important
for fluid characterization. Extensional viscosity
should be very sensitive to particle shape ac-
cording to predictions of suspension theory (1)
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and to molecular weight according to kinetic
theory for polymer solutions (2).

To better understand the response of real
fluids in extension it is highly desirable to have
available rheometers capable of generating
steady extensional flows. Steady extension al-
lows us to measure extensional material func-
tions of a particular fluid which are only a
function of the rate of deformation, just as the
steady shear viscosity and shear normal stresses
are only functions of the shear rate. However,
unlike steady simple shear, steady extensional
flow is very difficult to generate. The only suc-
cessful steady extensional flow experiments in
the literature to-date are for very viscous polymer
melts, with n >103Pas. With such high vis-
cosities, solid test methods can be used, usually
with the addition of a buoyancy fluid. Dealy (3)
has recently reviewed these methods. The most
successful of these seems to be the vertical
tensile system with feedback control developed
at BASF by Miinstedt and Laun 4—6).

For lower viscosity liquids, a great variety
of methods have been tried, for example con-
trolled fiber spinning (7, 8), the ductless siphon
or Fano column (9, 10), bubble growth (11, 12),
converging flow (13, 14) and the spinning drop
(15). In fact, the development of such tests has
been one of the most active areas of recent
rheology research. For some of these studies,
correct measures of extensional viscosity have
been obtained for Newtonian fluids (7— 10, 15).
However, in every case it was not possible to
achieve steady extensional flow and thus not
possible to separate strain rate and time effects
for viscoelastic fluids. Some problems in these
flows are
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1. initial or entrance conditions dominating the
flow,

2. the existence of a free surface which does not
generally obey the kinematics of steady ex-
tension,

3. changing of the rate of extension along the
path lines of fluid elements (inhomogeneous
flow), .

. 4. flow instabilities,
5. failure to eliminate shear.

As Walters wrote recently: “At the moment
there appears to be no practical way of generat-
ing a steady extensional flow in the laboratory
for mobile liquid systems” (16).

In this paper, we present a new framework
for viewing steady extensional flows, that of
steady orthogonal stagnation flow. This ap-
proach seems to be helpful in dealing with the
problems noted above, particularly entrance
conditions. First we describe the kinematics of
stagnation flow in- general, concentrating on
two important special cases: axisymmetric and
planar. Then we analyse the stress field in these
flows, particularly the normal and shear com-
ponents at stream surfaces. The stagnation flow
framework suggests a number of modifications
for existing methods and some new extensional
tests. These are discussed with particular em-
phasis on flow through dies with lubricated
boundaries. Finally we present some prelimi-
nary results for flow of a polyacrylamide solu-
tion through a lubricated uniaxial extensional
die.

A similar approach as suggested here has been
used by Giesekus (17, 18) who studied general
flows with constant velocity gradients. His
studies concentrate on the kinematics of these
flows and their verification in a special experi-
ment, : :

2. Steady orthogonal stagnation flow

All steady extensional flows can be expressed
in terms of steady orthogonal stagnation flow,
the impingement of two equal coaxial fluid
streams, cf. (19, 20). If the two streams are not
coaxial and equal, some shear flow will be
generated. Figure 1 shows the collision of two
coaxial streams of elliptical cross sections.

The interface between the two streams is a
plane of symmetry which intersects the axis at
the stagnation point (v = 0). The flow is called

Ey=-Ey~E,

éz = 3éy

Fig. 1. The coliision of two equal, elliptical streams
generates general, steady biaxial extension. The large
arrows indicate the flow direction. In this case V < 0.
The cross-section at position x, is the only circular
one. View: tilted around z-axis by 45 degrees

orthogonal stagnation flow, since the axis of the
streams is orthogonal to the plane of symmetry.

A cartesian coordinate system x, y,z is chosen
with the origin at the stagnation point and with
its axes in the direction of the principal axes
of the rate of strain tensor. As indicated in the
figure, the x coordinate lies along the axis of
the two streams. .

The following analysis is concerned with
steady extensional flow -in the entire flow field.
Steady extensional flow of mobile fluids will
probably never be achieved completely. How-
ever, before trying possible experiments to
control the geometry of the extensional region,
we first need to know what shape the stream
surface should have in an ideal experiment.

2.1. Kinematics

For general steady extensional flow, the
velocity field » is given by the Cartesian
components

[1]

(®) = (6. x,8,),€,2)
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where the & are constant extension rates. The
extension rates may adopt positive or negative
values. For an incompressible fluid

&= —( +E). [2]
This is a special case of the flows with constant
velocity gradient as investigated by Giesekus

" (17). The vorticity is-zero. The components of
the rate of strain tensor are

2, 0 0
(y)=(o 2é, 0 )
0 0 2

(3]

The rate of strain is constant in the whole flow
field. The fluid eclements are elongated at
constant rates &, é,é, while they move along
their path lines, i.e. the flow is steady in a
Langrangian sense.

By integrating the components of eq.[1] and
by eliminating the time we obtain the path line
of a fluid element as the intersect of two cylin-
drical surfaces

(x/x0) i = (yfyo) > = (z/z0) ",

where (xo, Yo, Zo) is a point on the path line.

It is interesting to note that the shape of
the entire stream surface is prescribed by pre-
scribing the cross section at one position x. For
most of the following analysis (an exception is
planar extension) it will conveniently be as-
sumed that -the fluid streams at positions
x =xo and x = —x, have a circular cross-
section of radius

R = 03 + 2.

(4]

(5]
The shape of the elliptical stream surface then
is described by

2 2a
y2(x/x0)t*e + 2 (x/x)' ** = R?,

(6]
with the ratio of extension rates

a = &,[é,.

[7]
The fluid streams exhibit an elliptical cross-
section at all positions |x| # xo. The only
exception is axisymmetric extensional flow
(é./é, = 1), where the cross-sections remain
circular if a circular cross-section is prescribed
at one position x,. The volume flow rate within
the stream surface of eq. [6] is

V = nR?v,(x¢) = TR*é, X, .

(8]

Eq.[6] is not valid for the limiting case
x — 0, because the stream surface as described
in eq. [6] never reaches the plane of symmetry
(x = 0). A circle on the plane of symmetry with
its origin at the stagnation point deforms into
an ellipse as the flow continues.

The plane of symmetry is a material plane,
i.e. material elements in the plane of symmetry
will remain in that plane. Material planes parallel
to the plane of symmetry at some distance x
remain planar and move with uniform velocity
v, (independently of the position [y,z] of a
material element in the plane).

We can also write expressions for the principal
strains ¢ which a fluid element experiences
passing through a stagnation flow. If an element
moves from position x, to x then

& = In(x/Xo),

£
2 = Zin(x/xo),

(9]

g = gz—ln (x/xo) -
&x

The residence time of this material element

In (x/xg)
Ex

At = [10]

is determined by the rate of strain and by the
two positions x,Xo.

There are two important special cases of
steady stagnation flow: axisymmetric (uniaxial
or biaxial) and planar. Each of them is worth
being investigated more closely. The governing
equations then simplify considerably.

2.1.1. Kinematics of steady axisymmetric
stagnation flow (@ = 1) '

Consider the collision of two circular streams
(é, negative, §, = &,). A cylindrical fluid element
along the x axis at the inlet plane of the
flow will bg flattened as it flows toward the
stagnation point becoming a large thin disk as
x — 0. This is an equal biaxial extension. In this
case eq.[6] for the stream surface reduces to

(x/xa)(y* + 2% = R?, [11]
or in cylindrical coordinates (x,r,6)
xrt = xoR?. [12]

2t
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This equation then describes the shape of the
two impinging streams. The velocity has the
components

(v) = (éxxa —éxr/zi 0) [13]
and the volumetric flow rate is
V = nR?v,(xo) = nR?é,x,. [14]

{

v

Fig. 2. Steady uniaxial extensional flow" generated by
flow into a trumpet shaped tube (reverse impingement).
The stream surface is axisymmetric. View: tilted
forward by 15 degrees.

By reversing the flow rate, the sign of é,, we
obtain uniaxial extension with the same kine-
matics and flow geometry, see figure 2. How-
ever, both cases are interesting rheologically
since we expect particles or macromolecules to
orient differently in compression and in exten-
sion: in uniaxial extension, the macromolecules
orient themselves parallel to the axis of exten-
sion, while in biaxial extension the macromol-
ecules orient themselves paraliel to the plane of
symmetry.

2.1.2. Kinematics of steady planar extension
(a=0)

Another important special stagnation flow
is planar extension (sometimes referred to as

“pure shear™). In this case, one of the extension
rates is zero, é, = 0. Planar extension can be
achieved by a stagnation flow with an elliptical
cross section in which only one axis of the
ellipse changes with x. From eq. [6] we obtain
the shape of the stream surface

(x/x0)*y? + z2 = R2. [15]

Perhaps a more natural way of generating
planar extension is the impingement of two
rectangular streams as shown in figure 3. The

U

Fig. 3. The impingement of two rectangular streams
generates steady planar extensional flow

flow is two-dimensional in a cartesian coordi-
nate system. The shape of the rectangular
streams is described by

xy = hxo/2, [16]

where h is the thickness of the stream at
|x] = xo. The velocity profile is

(v) = (éxxa _éxya 0) [17] '

The z-axis is a stagnation line (v = 0). The
volumetric flow rate is

V = hlé, x,, [18]

where [ is the length of the stream as indicated
in figure 3.
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2.2. Stress

In the ideal case of steady extensional flow,
the extension rates and the extra stress are
constant throughout the fluid. A real experi-
ment, of course, requires an entrance length
(like in the measurements of shear rheology
with a capillary rheometer). In that entrance
length the fluid should be deformed at-a constant
extension rate until steady extra stress is reached.
The magnitude of this entrance region depends
on the rheological properties of the fluid. It has
to be determined experimentally and shall not
be analysed in this study.

When the extra stress is constant throughout
the fluid (V -t = 0), the equations of motion
simplify to

op

<2 _ _F

PEix = — == + PYx,

. op

P&y = ———+ 04y,
dy
0

pitz = —L 4 pg,, [19]
0z

where p is the fluid density and the g; are com-
ponents of the gravitational acceleration. Solv-
ing for the pressure term we obtain

p(x,5,2) = p(0,0,0) + p(gxx + g,y + g.2)
- %(éﬁx’ + &y + 8223, [20]

For fluids of low viscosity the volume forces due
to gravity and due to acceleration are important.
For molten polymers, however, volume forces
are negligible compared to surface forces; the
pressure consequently can be assumed to be
constant throughout the fluid.

The total force on the cross-section of one
of the streams is just the integral of normal

stress on the y,z-plane over the cross-sectional
area of the stream

Fp=[T.dA. [21]
A

F, can readily be evaluated from the normal
stress on the particular cross section A.

The boundary conditions are most important
when designing an extensional experiment. The
normal stress on the stream surface
T, = —P+ T [22]
and the corresponding shear stress T,, depend
on the principal stresses T,,, T,,, T;,.

The stress component normal to the curved
stream surfaces requires specifying the surface
unit normal vector n:

Tw=nT n=nT,+nT,+nT,. [23]

The stress component T, is the “pressure” that
a transducer at position x will read when
mounted normal to the stream surface of eq. {6]
at the boundary.

In a similar way, we can determine shear
stress components at the stream surface
T,=nT-t [24]
where ¢ stands for any vector in the tangent
plane.

Note: The shear stress components T, are
never equal to zero, since the tangent to the
stream surface is not a principal plane. Along
the curved stream surface, the components
T,., T,, change even if the principal components
of the extra stress supposedly stay constant. It
will be one of the most difficult tasks of design-
ing steady elongational flow experiments to
achieve the stress at the boundary as described
in egs. [23] and [24].

Two unit tangential vectors on the stream surface can be found from eq. [6] by taking the derivative

of z with respect to x and y

(t) =

i1+a

< a z* 1 yz(x)
2,0, — _— ——
1+a x 14+a x \ xo

[25]

zz+< « & 1 i(iﬂuu‘a‘)’]‘”’
1+a x 14+a x \xo

24
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o))

() = '

x H1-a)1/2 °
[22 + yz (__) 1+a
Xo

(26]

These two tangent vectors are in a plane parallel to y = 0 and in a plane parallel to x = 0,
respectively. The two tangent vectors are not perpendicular to each other. It is possible, of course,
to choose another pair of tangential vectors for describing the tangent plane at (x, y,z).

The unit normal vector n on the stream surface of eq. [6] is calculated as the cross product of

two tangential vectors. The components are

() =

( a_ 22 1 _.Yii)*“—’xia‘
1+a x 14+a x \ xg ’

y(;x_) l:a ,Z)
Xo

[( « 2. 17 (_>M>+y(_>u+]
14+a x T4+a x \x Xo

[27]

In actual experiments, the pressure transducers will be arranged in the principal planes y = 0 and
z = 0. The components of the normal vector then simplify considerably:

( a z,O,x)
1+a
2 1/2
(52) 7+ 7]
1+a

(m) =

(for y = 0),

[28]

1
L, x, 0
<1+ay )

The unit tangent vectors in the principal planes are

(x,O,— a z)
1+a
2 1/2
o)
1+a

=

(fory =0),

(30]

(n) = I T (for z = 0).
[(1+a> y ”} [29]
1
——
1
o= - 1+a2 NG (for z = 0).
[+ (2) 7] o

These tangent vectors are of special interest for axisymmetric and for planar extension.

2;211 . Stress in axisymmetric extension (a = 1)

The above relations reduce considerably for
the special case of steady axisymmetrical ex-
tensional flow. Letting §, = &, the cross-sections
of the streams are circles of varying radii. The
unit normal and the unit tangent on the stream
surface in cylindrical coordinates are

() = 5250

(2x, —r,0)
Sae e O

=@ Ty

The normal stress on the stream surface and the

tangential stress in flow direction are

r2

’I;m=—_7;x_7:r +7:r’ 33

4x? + r? ( ) [33]
-2rx

nt = 55 i — T;r . 34

T ax? 4 2 ) [34]

At large x, the normal stress T;, approaches T,
while at small x it goes to T,,. The shear stress
in the tangent plane vanishes at large x or at
large r; it is most pronounced, when r and x
are of the same order of magnitude.

In the region of fully developed flow, the
principal normal stress differences will be con-
stant and a differential wall pressure measure-
ment at two positions, x, and x,, will give
1. — T,

nny nny

= (T;x - T;'r)

1 1
<1-+4xyc B 14—4xyc>
—pg,(xy — x;)

2 L2
+pg.ﬂ_ii+£<l__ld][g]
2 8 \x, X5/
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with
C == xORz .

For uniaxial extension (or equal biaxial ex-

tension), the extensional viscosity is defined as

T — To
g = ———-. [36]
&x
Thus with the differential pressure at known
positions the extensional viscosity can be eval-

uated.

2.2.2. Stress in-planar extension (a = 0)

The unit normal and the unit tangential vec-
tor on the stream surface simplify to

(yax’o) . (xa —,V,O)
"o Oy B

The normal stress T,, on the stream surface

and the tangential stress T,, can be evaluated

from eq. [37] together with eqs. [23] and [24]:
2

(m)

y

I’Ir'm = xz + y2 (T;:x - Tvy) + ’I}ya [38]
xy

’Tnt = xz + yz (T;:x - ’I;ry) [39]

The normal stress on the flat surface on the
sides of the rectangular streams is the principal
stress T,,. Thus, if we succeed in measuring two
pressures, one on the curved surface of the
stream and one on the flat side, both at the
same distance x above the plane of symmetry,
we will obtain a combination of the two normal
stress differences for planar extension:

2

¥y

T;m—'Tzz=_""_
x? + y?

(nx -

T,) + (T, — To).
[40]

These divided by the extension rate can be used
to calculate the two “planar extensional vis-
cosities”. The geometry term in eq.[40] indi-
cates how much of the first normal stress will
be measured by the pressure transducers. At
large x, near the inlet in figure 3, nearly all of
T,, — T, will be recorded, near the outlet very .
little. ‘ :

Note that an additional pressure term from
eq. [20] enters eq. [40], if the normal stress T,,
is not measured next to the stream surface
(xy = const.). This would be the case for meas-
urements in the plane of symmetry (y = 0), for
instance.

3. Extensional geometries

The framework of stagnation flow given
above can help us to modify some current
experiments or devise new ones to achieve
steady extension. The principle advantage of
impinging two streams together (at positive or
negative flow rate) rather than stretching a
single stream seems to be in the entrance and
exit conditions of the flow. Stagnation pro-
vides a smoother transition from a necessary
delivery system to the desired pure extension.
Thus for a given size apparatus more of the
flow will be at steady extension and larger ex-
tensional strains can be developed, eq. [9]. This
is, of course, still contingent on solving the other
problems with extensional experiments describ-
ed in the introduction. Below we suggest in a
very qualitative way some possible designs
motivated by the stagnation flow framework.

3.1. Free surface

In the current fiber spinning experiments the
entrance condition is usually that of shear flow
from the delivery tube followed by extrudate
swell. It seems that this entrance condition could
be improved by the design sketched in figure 4.
Here test fluid is extruded inward from a ring

Fig. 4. Spinning in two directions
from a ring die to provide large
extensional strain
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die and drawn off perpendicularly in opposite
directions as two cylindrical streams. In this
case, one can expect the velocity profile to
be closer to uniaxial extension than in the
common fiber spinning design. The shear flow
from the delivery channel should by compari-
son be less disruptive. It may be possible to
balance gravity with a buoyancy fluid.

A second extensional flow experiment with
free surface is uniaxial extension in a ductless
syphon [9, 10]. Comparison with the velocity
field of stagnation flow shows that the entrance
and the exit conditions are not satisfying: At
the entrance of the extensional flow region,
there is no stagnation point generated, and at
the exit, the velocity approaches that of pipe
flow.

The stress at the free surface is different from
what is prescribed by eqgs. [33] and [34]. At a
free surface, the shear stress must be zero and
the normal stress T,, must be balanced by sur-
face tension. In order to meet these conditions
the extra stress might not be homogeneous
throughout the fluid.

Another significant problem with these free
surface experiments is that, due to surface
tension and gravity, the velocity field and the
surface shape do not follow eqgs. [1] and [6]. In
some cases the extension rate increases and in
others it decreases. along the filament (7 —10),
1.e. the flow then is not steady in a Langrangian
sense. Thus it seems desirable to look at stagna-

tion flow experiments that somehow can be
confined between liquid or solid surfaces.

3.2. Stream in a sea of fluid

Frank, Keller, and Mackley (21, 22) achieve
large extensions of macromolecules in solution
by letting two opposed coaxial fluid jets meet
in a sea of fluid. The jets come from two coaxial
pipes (or slits, respectively). The parabolic
velocity field of pipe flow has to rearrange into
the velocity field of stagnation flow. Most of
the fluid is subjected to shear and extensional
deformations. Exceptions are the fluid elements
moving along the axis of symmetry and moving
in the plane of symmetry: they are subjected
to pure extensional flow, but at changing
rates of extension along their paths. Only in the
immediate neighbourhood of the stagnation
point, the flow becomes steady extension.

The velocity field of eq.[1] as prescribed by
steady extension requires velocities which in-
crease with the distance from the stagnation
point. This requirement is in contradiction of
flow in a sea of fluid, where the velocity reduces
to zero in a distance.

3.3. Moving surfaces

Taylor (23), Giesekus (18), and recently Mack-
ley (24) used the arrangement of four cylindrical
rollers shown in figure 5 to produce planar
stagnation flow in a Newtonian fluid. Parlato,
as communicated in (13), reported that for some

— / ~—

p— L // \\ \\, —— —
cn—— —— —— -~ " S s c— a—
e —— —.——__-————’ — — — srmmemme——ay
- — c—

——————— ~ - e —
— — ;- __

-\

Fig. 5. The four roller experiment
of Taylor (23). This produces
planar stagnation flow only near
the center. In the picture the roller

radius is chosen to be a radius of
curvature of one of the hyperbolic

stream lines (dashed) of steady
planar extension
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viscoelastic fluids the rollers could not pump
the fluid. We see that a roller of radius r only
locally approximates the desired hyperbolic
stream surface xy = const. With flexible belts
it would be possible to better approximate the
shape. However a major problem is that a con-
tinuous belt must move at constant velocity,
whereas eq.[1] requires a changing velocity
along the surface. Measurements of pressure
through such a belt would also be difficult.

Another approach might be to construct a
surface from a row of many small rollers, each
of which can assume the velocity necessary for
planar extensional flow. The experimental prob-
lems of roller friction, sealing the spaces between
the rollers, and measuring pressures in such an
apparatus seem to be formidable.

34. Porous walls

It is possible, in principle, to achieve a steady
stagnation flow by controlled removal (or in-

<

|\

Fig.6. Approximation of axisymmetric stagnation
flow by flow into a porous tube with a gradient of
pores length

jection) of fluid through porous walls. Such an
idea is schematically shown in figure 6. From

kinematics we know that the removal rate per

unit area has to be constant along the entire inner
wall of the pipe. Here we suggest control of
fluid removal by varying the pressure drop
through the holes, lower drop near the center.
The design is relatively simple, however in this
case relative flow rates would also be controlled
by the viscosity shear rate relation for the test
fluid. Flow rate could also be controlled by
varying diameter or concentration of pores.
In either case the sections of solid wall will
contribute shear to the flow.

Note that for flow with negligible inertia and
gravity the pressure is constant throughout the
fluid. In this case, the distribution of pores has
to be uniform along the boundary. ’

3.5. Lubricated surfaces

An approach which looks more promising
the above concepts is to provide some means
of promoting slip at solid boundaries. Some
polymer melts such as polyvinylchloride (25)

and polytetrafluorethylene (26) are known to

slip at die surfaces. In many cases, a low

molecular weight insoluble species is added as -

a “lubricant” or processing aid to promote
slip. Shaw (27) reports that a coating of silicone
grease on the wall of a conical die reduced
pressure drop for polyethylene melts. In these
later cases we clearly have two-phase flow with
a relatively low viscosity phase in a thin layer
at the wall carrying most of the shear stress.
Very recently Everage and Ballman (28) have
reported using a continuously lubricated die
with a converging circular cross-section for uni-
axial extensional flow measurements.

This concept seems to have potential for a
wide variety of experiments. If suitable lubricants
and injection means can be found then solid
dies with the shapes shown in figures 1 to 3 can
be made to produce any type of steady extension
flow. Another possible design is to impact a
stream onto a lubricated plate as indicated in
figure 7. The shape of the surface probably has
to be prescribed by a lubricated die.

If the lubricant layer is relatively thin and of
much lower viscosity than the test fluid, then
the flow in one of these lubricated die geometries
will indeed be a stagnation flow and described
by the equations developed above. The exten-
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i D sample fluid
- lubricant

Fig.7. Collision of an axisym-
metric stream with a lubricated

lubricant

sional stresses can be evaluated from pressure
taps in the solid surfaces reading through the
lubricant layer or the total thrust on a plate
such as in figure 7. The pressure taps will
measure the component of the stress field
inside the flow acting normal to the solid sur-
face, T,,.

> plate. The stream is contained in
a lubricated die

4. Conclusions and preliminary results with a
lubricated die

The description of the ideal extensional ex-
periment for measuring viscosities of steady
extension demonstrates the opportunities and
the disadvantages of known experiments. The
most pronounced deviations arise from insuf-

Fig. 8. Material surfaces deform-
ing in converging die flow with no
-slip wall condition. Fluid: 3.5%
polyacrylamide solution in H,O.
Flow rate 6.85 cm>/s. Die contour:
xr? =8.7em?
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ficient initial and boundary conditions for the
velocity field and for the stress.

Of all the concepts suggested above we find
the lubricated dies most attractive. However
there are considerable constraints on the lubri-
cant. The boundary conditions on the lubricant
layer are:

1. constant lubricant flow rate,

2. lubricant velocity zero at the die surface,

3. lubricant velocity equal to the test fluid veloc-
ity at the interface,

4. shear stress balance across the interface,

5. normal stress balance across the interface.

The problem, of course, is to satisfy all these
boundary conditions and still achieve the desired
steady extensional flow. The choice of lubricant
viscosity and flow rate and even possibly the die
shape will be an optimization problem compli-
cated by potential interface instability. It may
be best to remove surface tension effects at the
interface by using a lubricant soluble in the test
fluid. Residence time can be made short enough

so that the test fluid will be essentially unchanged
during the extension.

We are presently carrying out such lubricated
die experiments (29). We have constructed an
axisymmetric die from plexiglass which follows
the xr? = const. shape. We used a 3.5% poly-
acrylamide (Cynamer P-250) solution in water,
zero viscosity #, = 100 Pas. Velocities were
measured by hydrogen bubbles as described by
Schraub et al. (30) using a 25pm diameter
tungsten wire with 100 V DC.

Figure 8 shows velocity profiles for a 6.85 cm®/s
flow rate of polymer solution without lubricant.
Note the very severe velocity gradient and the
apparently zero velocity at the wall. In figure 9
the same polymer flow rate was used but with
approximately 3.42 cm?/s water flow rate intro-
duced at the wall. We found that with an in-
soluble lubricant such as silicone oil the flow
was unstable; the oil would not uniformly wet
the walls. In figure 9 the water layer is the black
layer particularely apparent on the left side of
the flow. The velocity profiles are nearly flat.

Fig.9. Material surfaces deforming in
converging die flow with lubricated walls.
Fluids: polyacrylamide solution with
H,O as lubricant. Flow rates: 6.85 cm?/s
and 3.42 cm3/s
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Distortion of the profiles near the exit may be
due to a valve at the exit. Wall pressure drop
in the lubricated case was much less than for
the non-slip flow. A more complete account of
these experimental results along with an analysis
of flow in the lubricant layer has been presented
elsewhere (29).
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Summary

A new framework for viewing steady extensional
flow is presented: Steady orthogonal stagnation flow
is an ideal which one should strive to reach in an
actual experiment. The kinematics and the stress
boundary conditions are developed for stagnation flow
in general and in two special cases: the impingement
of two circular streams and of two planar sheets.
Contemplating this ideal clarifies the advantages and
disadvantages of current experiments, thereby pointing
the way towards new experiments; a number are sug-
gested. Axisymmetric (with é, > 0) and planar stagna-

tion flow within a lubricated die look particularly pro- .

mising. Some preliminary experimental results are given
for uniaxial extension of a polyacrylamide solution in
a water lubricated die.

Zusammenfassung

Es werden neue Leitlinien zur Beurteilung von sta-
tiondren Dehnstromungs-Experimenten vorgeschlagen:
Die stationdire orthogonale Staupunktstromung wird
als ein Ideal herausgestellt, das man in Experimenten
zu erreichen versuchen sollte. Die Kinematik und die
Randbedingung fiir das Spannungsfeld werden fiir all-
gemeine Staupunktstromungen hergeleitet und auf
zwei Sonderfille angewendet: die axialsymmetrische
und die ebene Staupunktstromung. Der Vergleich dieser
idealen Strémung mit wirklichen Experimenten ver-
deutlicht deren jeweilige Vor- und Nachteile und weist
so auf neue Experimente hin. Mehrere neue Experi-
mente werden vorgeschlagen. Die axialsymmetrisch
nach auflen gerichtete und die ebene Staupunktstrs-
mung in Diisen mit geschmierten Wandungen er-
scheinen besonders erfolgversprechend. Einige vor-
ldufige experimentelle Ergebnisse fiir die einachsige
Dehnstromung einer Polyacrylamidlosung in einer mit
Wasser geschmierten Diise werden vorgestellt.

References

1) Brenner, H., Int. J. Multiphase Flow 1, 195 (1974).

2) Bird, R. B., O. Hassager, R. C. Armstrong, C. F.
Curtiss, Dynamics of Polymeric Liquids: Vol. II,
Kinetic Theory, p. 637, Wiley (1977).

3) Dealy, J. M., J. Non-Newtonian Fluid Mech. 4,
9 (1978).

4) Miinstedt, H:, Rheol. Acta 14, 1077 (1975).

5) Laun, H. M., H. Miinstedt, Rheol. Acta 15, 517
(1976).

6) Miinstedt, H., A new universal extensional rheo-
meter for polymer melts, presented at Soc. Rheol.,
Houston, Oct. 1978.

7) Weinberger, C. B., J. D. Goddard, Int. J. Multi-
phase Flow 1, 465 (1974).

8) Baid, K., A. B. Metzner, Trans. Soc. Rheol 21
237 (1977).

9) Kanel, F. A., Ph. D. Thesis, University of, Dela-
ware (1972).

10) Balmer, R. T,, D. J. Hochschild, J. Rheol 22, 165
(1978).

11) Street, J. R., Trans. Soc. Rheol. 12, 103(1968).

12) Pearson, G., S. Middleman, Amer. Ind. Chem
Engg. J. 23, 714 (1977)

13) Metzner, A. B, A. P. Metzner, Rheol Acta9 174
(1970).

14) Cogswell, F. N., Polymer Eng. Sci. 12, 64 (1972).

15) Hsu, J. C., R. W. Flummerfelt, Trans. Soc. Rheol.
19, 523 (1975).

16) Walters, K., Rheometry, p.221, Halsted Press
(London 1975). v

17) Giesekus, H., Rheol. Acta 2, 101 (1962).

18) Giesekus, H., Rheol. Acta 2, 112 (1962).

19) Schlichting, H., Boundary Layer Theory, 6th ed.,
p. 91, McGraw-Hill (1968).

20) Batchelor, G. K., An Introduction to Fluid
Mechanics Ch. 2.7 (Cambridge Univ. Press, 1967).

21) Frank, F. C,, A. Keller, M. R. Mackley, Polymer
12, 467 (1971).

22) Mackley, M. R., A. Keller, Phil. Trans. Roy. Soc.
London 278 A, 1276, 29 (1975).

23) Taylor, G. I, Proc. Roy. Soc. A 146, 501 (1934).

24) Mackley, M. R., J. Non-Newtonian Fluid Mech.
4,111 (1978).

25) Chauffoureaux, J. C., paper presented at Amer.
Ind. Chem. Engg. meeting, New York, November 1977.
. 26) Snelling, G. R., J. F. Lontz, J. Appl. Polym. Sci.
3, 257 (1960).

27) Shaw, M. T, J. Appl. Polym. Sci. 19, 2811 (1975).

28) Everage, A. E., R. L. Ballman, Nature 273, 213
(1978).

29) Macosko, C. W, B. B. Wilson, H. H. Winter,
Extensional flow experiments with a lubricated die
presented at Chem. Eng. Rheol. (Aachen, March 1979).

30) Schraub, F. A., S. J. Kline, J. Henry, P. W. Run-
stadler, A. Littell, Trans. ASME, J. Basic Eng. 87,
429 (1965).

Authors’ addresses:

Privatdozent Dr.-Ing. H. H. Winter
Institut fiir Kunststofftechnologie
der Universitit Stuttgart

Béblinger StraBle 70

D-7000 Stuttgart 1

Professor Dr. C. W. Macosko, K. E. Bennett
Department of Chemical Engineering and
Material Science

University of Minnesota

151 Chemical Engineering Building
Minneapolis, Minnesota 55455 (U.S.A.)



