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Rheometers are instruments for measuring rheological properties of liquids and (soft) 
solids.  Typical rheological properties are viscosity, modulus, compliance, yield stress, 
and relaxation times.  These properties depend on the microstructure of the material and, 
hence, depend on stress or strain-induced structural changes, and on time (aging or 
ripening of structure).   For rheometry, a test sample gets mounted into the rheometer and 
subjected to well-defined stress or strain.  In strain-controlled experiments, the strain or 
strain rate is prescribed and the stress response gets recorded.  Stress-controlled 
instruments prescribe the stress and record the strain.  Typically, rheometers are designed 
for one or the other mode of operation.   
 
This chapter deals with the capillary rheometer, which is one of the oldest rheometer 
types.  Hagen and Poiseuille already found that the pressure drop, ∆p, for flow in a 
capillary (radius R, length L) at a volume flow rate, Q, depends on the shear viscosity 
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provided that the flow is laminar and the fluid is Newtonian. The following will describe 
capillary rheometry that also applies to non-Newtonian fluids.  
 
Capillary rheometers are designed for characterizing polymer melts at high shear rates, 
typically from 10 to 10,000s-1.  Such shear rates can be reached easily in capillary flow 
and also in polymer processing (extrusion, injection molding).  Excessive heat generation 
due to viscous dissipation (Winter, 1977), flow instabilities (Ramamurthy, 1986), or wall 
slip (Mooney, 1931) determine the upper limit of such high shear rate experiments with 
capillary rheometers and require special attention. 
 
The measurement principle is simple. A pump (extruder, gear pump, ram) pushes test 
fluid through a capillary of constant cross section (circular or slit cross section).  The 
volume flow rate, Q, and the pressure gradient, p’, in the region of fully developed flow 
are measured for determining the shear viscosity.  
 
A typical capillary rheometer is shown in figure 1. Some capillary rheometers use a 
single pressure transducer at the die inlet and recover the pressure gradient through repeat 
measurements as described further below.  The volume flow rate is determined from the 
measured piston speed, vp, and the piston cross sectional area, Αp. 

Q = Apvp      (1). 
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********************************************************** 
Figure 1:  Capillary rheometer which consists of a feed system (1), a 
connector channel (2), a temperature controlled housing (3) which 
contains the sample reservoir (4) and is wrapped by heaters (5), a 
measurement die (6) with an insulated head (7), pressure sensors (8), 
temperature sensor (9), piston (10) to push the sample through the die, 
and mechanical drive system (11 - 13).  The feed system (1) is 
convenient for extensive sample testing but requires larger samples.  
Mounted on the capillary (6) are pressure transducers for a direct 
measurement of the pressure gradient in the fully developed flow region. 

********************************************************** 
Figure 2:  Slit capillary with pressure transducers (Eswaran et al., 1963; 
Robens and Winter, 1975).   

********************************************************** 
 

 
Data Treatment 
 
The overall purpose of the capillary flow experiment is the measurement of the steady 
shear viscosity 
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of non-Newtonian fluids such as polymer melts and solutions. While the experiment itself 
is straight forward, the data analysis is unduly involved. Difficulties arise from the fact 
that neither the shear stress, τ, nor the shear rate, γ& , are measured directly.  Their value 
has to be extracted from the pressure readings and the measured volume flow rate, Q. 
This is the topic of most of  the remaining chapter.   
 
The data analysis depends on the geometry of the capillary.  Here we consider capillaries 
with circular cross section (radius R; area πR2 for) and slit cross section (height H; width 
W; area HW).  Equations need to be derived for the shear stress and the shear rate which 
take into account that neither one is constant throughout the capillary cross section. 
 
a) Shear Stress    The shear stress in fully developed capillary flow grows linearly 
with the distance from the center of the capillary (r=0 or y=0) to its maximum value, the 
wall shear stress τw:  

circular geometry ( ) Rrr w /ττ =   with  pR ′−=
2wτ   (4), 

slit geometry  ( )  /2 Hyy wττ = with  pH ′−
2wτ   (5). 

This shows that we need to measure the pressure gradient, p′ , in the capillary before we 
can determine the shear stress distribution. The pressure gradient can be approximated by 
the measured pressure drop ∆p over the entire capillary 

L
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However, this approximate value overestimates the real  p’ value since it includes 
pressure losses at the inlet and the outlet of the capillary.  These so-called ‘end effects’ 
can be subtracted out by repeating the measurements (same volume flow rate Q again and 
again) with capillaries of different length (Bagley, 1960).  The pressure gradient is then 
determined as (when using two capillaries, for instance) 
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This is the preferred method of determining p′ . 
 
 
b) Shear Rate     The shear rate in fully developed capillary flow grows sharply with 
increasing distance from the center of the capillary.  The shear rate distribution is a 
characteristic property of the test sample and can not be predicted beforehand.  There is, 
however, a possibility of determining the share rate at the wall by combining data from 
measurements at different volume flow rates Q1, Q2, Q3, etc. and determining the slope of 
the curve Q(p’) for each of the flow rate values. With this information, the shear rate at 
the capillary wall can be calculated as  
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These equations were first proposed by Rabinowich (1929). Determining the gradient 
(∂Q/∂p’) for these formulas is somewhat tedious and often marred with error. An 
alternative approach will be explained in section (c) below. 
 
Capillary flow experiments together with the above analysis (using equations 4, 7, 8, or 
equations 5, 7, and 9, respectively) lead to the final result, the shear rate dependent 
viscosity. In all cases, the viscosity value belongs to the shear rate at the wall  
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A typical data set is shown in Table 1 together with the data from the analysis. 
 
 
********************************************************** 
Table 1:  Evaluation of capillary flow experiments at a range of shear rates. 
********************************************************** 
 
 
 
c) Approximate Determination of Shear Rate Values  Much complication can be 
avoided with the help of an approximate method that was proposed by Schűmmer (1969) 
and Giesekus et al. (1977).  They realized that shear thinning fluids, such as polymer 
melts, adopt a shear rate of  
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with κ = 0.75 (about).  This is called the “representative shear rate” and belongs to some 
intermediate position r or y  as defined in eqs. 11 and 12. The shear stress at these 
positions is known from the pressure gradient measurements 

circular geometry  pR ′=
2

κτ κ     (13), 

slit geometry    pH ′=
2

κτ κ     (14). 

The corresponding viscosity belongs to this new shear rate value at κR or κH/2 
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The new viscosity values are shown in table 2. 
 
 
********************************************************** 
Table 2:  Evaluation of capillary viscosity data according to Schűmmer. 
********************************************************** 
Figure 3:  Comparison of viscosity values (left) and flow curves (right) from gradient 
evaluation procedure (Rabinowich) and representative shear rate procedure (Schűmmer-
Giesekus).  The Rabinowitsch methods delivers data that reach to higher shear rates. This 
is recognizable in the figures. 
********************************************************** 
 
Temperature Effects 
 
The viscosity is preferably measured under isothermal conditions.  The temperature is 
uniform throughout the sample and experiments are repeated at temperatures T1, T2, T3, 
etc.  However, isothermal experiments are not possible at high shear rates where flow 
energy is converted into large amounts of internal energy of the sample.  This effect is 
called viscous dissipation (Winter, 1977).  Dissipation effects are minimized in capillary 
rheometry by using very thin capillaries (Robens and Winter,  
 
Many materials follow the so-called time-temperature superposition principle (Williams  
et al., 1955; Ferry, 1980).  For these, the temperature dependent viscosity 
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can be expressed with a reference viscosity at To that gets shifted to the new temperature 
T by applying both, the horizontal shift factor aT(T;To) and the vertical shift factor 
bT(T;Te).   
 
Temperature shift factors are defined as 
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with parameters Ε /R, Tv, ρ(T), ρ (To) and a reference temperature, To. The vertical shift 
factor has values close unity for many polymer melts (an is often falsely omitted from the 
data analysis), but can adopt very small or very large values for other materials. Here we 
have to emphasize that by far not all materials obey the time-temperature superposition 
principle (Colby, 1989); it needs to be confirmed for each class of materials.  
 
Approximation of Viscosity Curves for Shear Thinning Liquids 
 
Many formulas have been suggested for approximating the shear thinning behavior of 
polymer melts.  Very convenient for modeling calculations is the powerlaw relation 
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More realistic is the Carreau Yasuda formula (Yasuda, 1981)  
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which can be reformulated as  
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to also include non-isothermal flows. Parameters are the zero shear viscosity η0, the high 
shear rate viscosity η∞, the characteristic relaxation time λ, the powerlaw exponent n, and 
the broadening exponent α. Temperature shift factors account for the temperature 
dependence. 
 
A shear thickening viscosity, as found with concentrated suspensions (Egres and Wagner, 
2005), cannot be described by such approximation.  It is difficult to express such shear-
induced viscosity upturn (called “jamming”) in a simple approximation formula.  
 
Additional Uses of Capillary Rheometers 
 
a) Mini Extruder  The capillary rheometer often serves as mini extruder when it is 
combined with a stretching unit for the extrudate.  Wagner (2001) shows typical data of 
this type and proposes a powerful analysis of this experiment. 
 
b) Extensional Rheometer (Cogswell method) Cogswell (1972) noticed that 
extensional material properties dominate the converging flow from the wide reservoir 
(position 4 in Fig. 1) into the narrow capillary. He separated the entrance pressure drop 
(from the Bagley correction, see above) into shear and extension dominated components. 
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The extensional component was then rearranged into an empirical expression for the 
steady extensional viscosity. Binding (1988) proposed an alternative empirical relation 
that also may be used. The Cogswell-Binding methods are very attractive since it is still 
impossible to reach very large strains and deformation rates with the existing extensional 
rheometers  (Morrison 2001) 
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Table 1 
 
Q p' Q p' gradient shear stress shear rate viscosity 
cm^3/s bar/cm    [m^3/s]    [Pa/m] term [-]    [Pa]    [1/s]    [Pa s] 

0.0011 1.1 3.66667E-10 11000000 1.01 2860 3.3 859
0.0018 1.7 6E-10 17000000 1.02 4420 5.5 809
0.0024 2.3 8E-10 23000000 1.05 5980 7.3 815
0.0037 3.4 1.23333E-09 34000000 1.12 8840 11.5 768
0.0054 4.9 1.8E-09 49000000 1.2 12740 17.1 744
0.0073 6.3 2.43333E-09 63000000 1.26 16380 23.5 698
0.0111 8.8 3.7E-09 88000000 1.3 22880 36.0 635
0.0182 12.2 6.06667E-09 1.22E+08 1.56 31720 62.6 506
0.0255 14.8 8.5E-09 1.48E+08 1.73 38480 91.0 423
0.0365 18 1.21667E-08 1.8E+08 1.88 46800 134.4 348
0.0548 21.5 1.82667E-08 2.15E+08 2.31 55900 219.6 255
0.0729 24.3 2.43E-08 2.43E+08 2.83 63180 320.7 197
0.1096 28 3.65333E-08 2.8E+08 3.09 72800 503.7 145
0.1425 30.3 4.75E-08 3.03E+08 3.4 78780 688.2 114
0.1827 32.6 6.09E-08 3.26E+08 3.7 84760 923.7 92
0.2137 34.1 7.12333E-08 3.41E+08 3.8 88660 1096.6 81
0.2549 35.8 8.49667E-08 3.58E+08 4.12 93080 1369.6 68
0.3614 39 1.20467E-07 3.9E+08 4.31 101400 1993.6 51
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Table 2 
 

Q p' 
shear 
stress shear rate viscosity 

   [m^3/s]    [Pa/m]    [Pa]    [1/s]    [Pa s] 
3.66667E-10 11000000 2145 2.5 861

6E-10 17000000 3315 4.1 814
8E-10 23000000 4485 5.4 825

1.23333E-09 34000000 6630 8.4 792
1.8E-09 49000000 9555 12.2 782

2.43333E-09 63000000 12285 16.5 743
3.7E-09 88000000 17160 25.1 683

6.06667E-09 1.22E+08 23790 41.2 577
8.5E-09 1.48E+08 28860 57.7 500

1.21667E-08 1.8E+08 35100 82.6 425
1.82667E-08 2.15E+08 41925 124.1 338

2.43E-08 2.43E+08 47385 165.0 287
3.65333E-08 2.8E+08 54600 248.1 220

4.75E-08 3.03E+08 59085 322.6 183
6.09E-08 3.26E+08 63570 413.6 154

7.12333E-08 3.41E+08 66495 483.8 137
8.49667E-08 3.58E+08 69810 577.1 121
1.20467E-07 3.9E+08 76050 818.2 93
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Figure 1
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Figure 2
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