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Abstract A stability analysis of planar shear flow shear of a
homogeneous, complex fluid predicts that shear banding in-
stabilities can grow in fluids with a shear thinning strength
aboveWc = 1 and dampen out in fluids withW < 1. The shear
thinning strength,W γ ̇ð Þ ¼ − ∂ logη=∂ log γ ̇, arises natural-
ly as the lead material function for the stability analysis of
shear thinning fluids. The onset of shear banding is modeled
as shear-thinning instability, which is attributed to anomalous-
ly strong shear thinning. Not considered here are inertial or
elastic instabilities. In lack of suitable viscosity data from ex-
periments, a Carreau powerlaw fluid and a Carreau-Yasuda
powerlaw fluid serve as testbeds for theW-criterion. The anal-
ysis shows that the limiting high shear viscosity, η∞, plays an
important role in shear banding and that the ratio of the limit-
ing high shear viscosity and zero shear viscosity, η∞/η0, has to
be sufficiently small for shear banding to occur. The main
purpose of this brief communication is to share this new sta-
bility criterion. Extensive testing is still needed and is
planned for future study.
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Introduction

Complex materials have been reported to become unstable
when sheared beyond some critical condition. This includes

shear banding, which divides an otherwise homogeneous
shear flow into macroscopic regions (“shear bands”) parallel
the shear planes. In spite of being at the same shear stress (no
curvature considered here), the shearing in the bands occurs at
different shear rates. For homogeneous fluids, shear bands
consist of the same material, but exhibit different viscosities
(!). The shear banding phenomenon is accepted to be real. It
has been observed for a rich variety of complex fluids such as
foams, surfactant solutions, gels, soft glassy materials, and
concentrated particle suspensions as reported in extensive re-
views and research publications (Divoux et al. 2016, Ovarlez
et al. 2013, Fielding et al. 2009, Ovarlez et al. 2009, Callaghan
2008, Dhont and Briels 2008, Manneville 2008, Olmsted
2008). Some materials develop shear bands under transient
conditions only (Moorcroft and Fielding 2013) or never reach
steady shear conditions at all (Vasisht et al. 2016). Shear
banding can be viewed as an instability phenomenon in
which, under some conditions, fluctuations grow into bands
while, under slightly different conditions, such fluctuations
dampen out. Shear banding originates for reasons which
strongly change from material to material and are not obvious
in many cases.

This communication concerns the type of shear banding,
which is caused by exceptionally strong shear thinning. For
that purpose, we assume that steady shear conditions exist for
such material and define a shear thinning strength

W γ ̇ð Þ ¼ −
∂ logη
∂ log γ ̇

: ð1Þ

where W is the magnitude of the gradient in the conventional
log–log plot of the steady shear viscosity over the shear rate,
η γ ̇ð Þ. The format ofW arises naturally in the stability analysis
as will be shown. To my knowledge, this is the first time that
W is used as a meaningful material function.
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Since not all shear thinning liquids are able to form shear
bands, at least not under all shearing conditions, a criterion
should be made available that lets us distinguish fluids that
shear band from those that are not, and under which shearing
conditions.

Derivation of the W-criterion

For the stability analysis, we use a Gedankenexperiment, in
which a homogeneous fluid with known W γ ̇ð Þ is sheared
between two planar, parallel surfaces at an average shear rate
of γ ̇

0 ¼ U=H as shown in Fig. 1. The question arises about
the conditions at which the shear flow might get unstable and
possibly split into bands as indicated in the figure.

When splitting into a low-shear and a high-shear band of
sizes a and (H-a), respectively, the actual band sizes depend
on the relative shear rates (assuming a constant overall veloc-
ity U)

a
H

¼ γ ̇
2−U=H
γ ̇2−γ ̇1

: ð2Þ

Near onset conditions, the shear rates in the two bands will
barely deviate from the average. FluctuationsΔγ ̇ are consid-
ered to be small. The viscosity adjusts accordingly

η γ ̇ð Þ ¼ η γ ̇
0ð Þ þΔγ ̇ ∂η

∂ γ ̇

� �
γ0

þ O2

withΔγ
̇ ¼ Δγ ̇ð Þ1 orΔγ ̇ ¼ Δγ ̇ð Þ2:

ð3Þ

Δγ ̇ is negative in the low-shear band and positive in the
high-shear band. Δγ ̇ also differs in magnitude for the two
bands, but this difference is of minor importance for the fol-
lowing derivation.

The shear stress is uniform throughout the gap, with or
without shear bands. Before splitting into separate shear
bands, the stress is

σ0 ¼ γ ̇
0η γ ̇

0ð Þ; γ ̇
0 ¼ U=H : ð4Þ

After splitting into shear bands, the stress becomes

σsb ¼ γ ̇
1η γ ̇

1ð Þ ¼ γ ̇
2η γ ̇

2ð Þ ð5Þ

or in general

σsb ¼ γ ̇
0 þΔγ ̇ð Þ η γ ̇

0ð Þ þΔγ ̇ ∂η
∂ γ ̇

� �
γ ̇0

2
4

3
5: ð6Þ

For the prescribed condition of at constantU/H (see Fig. 1),
the total rate of energy dissipation goes down when the shear
stress decays. This is the case with shear banding. Shear bands
will grow if their formation reduces the stress in both bands:
(σsb)1 <σ0 and (σsb)2 <σ0. Vice versa, shear fluctuations

dampen out if shear bands would cause the shear stress to
increase. The decision about instability is with the shear stress
criteria

σsb

< σ0

¼ σ0

> σ0

8<
:

shear banding
onset

stable shear flow
: ð7Þ

σsb = σ0 is the dividing condition for banding or not
banding. We explore this further by equating Eqs. 4 and 6

γ ̇
0 þΔγ ̇ð Þ η γ ̇

0ð Þ þΔγ ̇ ∂η
∂ γ ̇

� �
γ ̇0

2
4

3
5 ¼ γ ̇

0η γ ̇
0ð Þ forσsb ¼ σ0: ð8Þ

The γ ̇
0η γ ̇

0ð Þ term cancels and the equation consolidates to

γ ̇
0Δγ ̇ ∂η

∂ γ ̇

� �
γ ̇0

þΔγ ̇ η γ ̇
0ð Þ þ Δγ ̇ð Þ2 ∂η

∂ γ ̇

� �
γ ̇0

¼ 0: ð9Þ

The fluctuations are assumed to be small with Δγ ̇ð Þ 2

<< Δγ ̇ and the onset criterion σsb=σ0 appears as

∂ logη
∂ log γ ̇

� �
γ ̇0

¼ −1 or W γ ̇
cð Þ ¼ þ1 withγ ̇

0≡γ ̇
c: ð10Þ

The stability analysis in conjunction with the stress criteria
of Eq. 7 shows that

& Complex fluids with W < 1 are always stable and
without shear banding. Their steady shear viscosity
can be measured and stability can be confirmed
experimentally

& Complex fluids withW γ ̇ð Þ aboveWc = 1 may form shear
bands as sketched in Fig. 1, where a band of low shear rate
coexists with a band of high shear rate at the same overall
shear stress σsb. The shear stress- shear rate function is
double valued

γ ̇
1 ¼ σsb=η1 andγ ̇

2 ¼ σsb=η2; ð11Þ

For the splitting into γ ̇
1 and γ ̇

2, see also Fig. 2.

Powerlaw viscosity fluid with W > 1

The shear instability interferes with viscosity measurements in
high W fluids with the consequence that viscosity data are
unavailable (a suggestion to overcome this problem in case
of steady banding will be made further below). In view of this
lack of experimental viscosity data, an analytical viscosity
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function needs to be chosen for testing the W-criterion. The
Carreau (1972) steady shear viscosity model

σ γ ̇ð Þ ¼ η γ ̇ð Þ γ ̇;
η γ ̇ð Þ
η0

¼ 1þ τ γ ̇ð Þ2
� �−n=2 ð12Þ

might serve the purpose. Its shear thinning strength calculates
as

W γ ̇ð Þ ¼ nτ2γ ̇2

1þ τ2γ ̇2
: ð13Þ

Equation 12 is a widely used analytical function for de-
scribing shear thinning in quantitative ways. The function in-
cludes both the constant zero shear viscosity η0 and shear
thinning at steady shear rates above 1/τ, where τ is a charac-
teristic material time for the transition from linear to non-linear
shear behavior.

According to the W-criterion, a Carreau fluid is always
stable for n < 1and has the potential for shear banding for
n > 1. The following analysis will focus on high-n Carreau
fluids (n>1) with the objective of gaining insight into shear
banding. To begin with, homogeneous shear flow is assumed

(no banding) and the steady shear viscosity η γ ̇ð Þ and steady
shear stress σ γ ̇ð Þ are predicted using Eqs. 12 and 13; see
Fig. 2 with solid lines for W < 1 and dashed lines for W > 1.
For these calculations, the viscosity is assumed to be the same
throughout a flow region.

W = Wc = 1 provides an important reference state for the
high-n Carreau fluid. Using Eq. 13, the critical shear rate at
W = 1 calculates as

τ γ ̇
c ¼ n−1ð Þ−1=2 for n > 1: ð14Þ

Strong shear thinning withW > 1 sets in when shearing at a
rate above this critical value, γ ̇c; see Fig. 2. The correspond-
ing stress has the upper limiting value

τσ γ ̇cð Þ
η0

¼ n−n=2 n−1ð Þ n−1ð Þ=2; ð15Þ

which cannot be exceeded by the high-n Carreau fluid under
any steady shearing condition. Shear banding potentially can
set in at any macroscopic shear rate U/H with one band shear-
ing at high rate γ ̇

2 > γ ̇
c and the other one shearing at low rate

γ ̇
1 < γ ̇c; see Fig. 2, right side. The shear rate ratio γ ̇

2=γ ̇
1

Fig. 2 Steady shear viscosity η γ ̇ð Þ, shear thinning strength W, and the
corresponding shear stress σ γ ̇ð Þ of Carreau fluids with W = 1 or higher.
The shear stress curve becomes double valued in shear rate, γ ̇

1 and γ ̇
2, as

indicated in the right figure for n = 1.6 (and some arbitrary stress); see
Eq. 11. The steady shear stress cannot exceed an upper limit which is

defined by W = 1 (when evaluated for the corresponding n value). The
zero shear viscosity η0 and the characteristic relaxation time τ of the
Carreau fluid do not need to be specified in this dimensionless
representation. Anomalously strong shear thinning is modeled here by
choosing n > 1

Fig. 1 Schematic velocity ux(y) of planar shear flow with an average
shear rate γ ̇

0 ¼ U=H . The following analysis will assume that it is
possible to keep the velocity of the top surface, U, unchanged for flow
with or without bands. During shear banding, the flow presumably splits
(forming “bands”) into two regions of slightly different shear rate, γ ̇

1

< U=H and γ ̇
2 > U=H . The interface is assumed to be clearly defined

and planar (neglecting the fluctuations which have been reported about
the interface). The choice of two bands, instead of three or more, and the
specific choice of band location do not cause any loss in generality for the
derivation below
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decreases with σsb→σc. There is no analytical solution for the
shear rate ratio of the Carreau fluid, except for small stress
values σsb< <σc, at which the shear rate ratio approximately
decays with

γ ̇
2=γ ̇

1≈ τσ=η0ð Þ n= 1−nð Þ: ð16Þ

For shear banding at very low stress, this ratio of shear rates
becomes very large. It looks almost as if the high shearing
band lubricates the low shearing band. The Carreau fluid is
unrealistic in this context since it predicts a decaying viscosity
approaching zero at high shear rates in the high-shear band.

A more realistic picture arises when including the limiting
high shear rate viscosity, η∞. Such lower limit was found for
many fluids (Ferry 1980), for which shear thinning is not
effective any more at very high shear rates. The Carreau-
Yasuda fluid (Yasuda et al. 1981) with its steady shear viscos-
ity

η γ ̇ð Þ
η0

¼ η∞
η0

þ 1−
η∞
η0

� �
1þ τ γ ̇ð Það Þ−n=a; ð17Þ

can capture this phenomenon; see Fig. 3 with specific values
for a and η∞/η0. Its shear thinning strength

W γ ̇ð Þ ¼
1−

η∞
η0

1−
η∞
η0

1− 1þ τaγ ̇að Þn=a
� �

2
64

3
75 nτaγ ̇a

1þ τaγ ̇a
ð18Þ

passes through a maximum at intermediate shear rates with
Wmax exceeding Wc = 1 as shown in Fig. 3. Interestingly, the
Carreau-Yasuda fluid with n = 1.1 barely reaches the critical
value ofWc = 1 because of the stabilizing effect of η∞ (see also
Fig. 4 about this effect). The corresponding steady shear
stress, σ γ ̇ð Þ ¼ η γ ̇ð Þ γ ̇, rises at first and then decays as shear

rates exceed a critical value τ γ ̇
c≈ n−1ð Þ−1=a, very much like in

the high-n Carreau fluids shown above. However, the stress
rises again at the very high shear rates when the viscosity
approaches its lower limiting value. In this way, the stress
assumes a sigmoidal shape with maximum and minimum at

W =Wc = 1. The shear rate becomes triple-valued (unstable) at
intermediate stress, but is single-valued (stable) at low and at
high stress as indicated in Fig. 3 at the right.

The origin of the three shear rates becomes obvious
when considering the three asymptotes as demonstrated
in Fig. 4, using n = 1.6 as example. The three asymptotes
are

τσ γ ̇ð Þ
η0

¼
τγ ̇ 1 ‐ low shear rate; W < 1

τ γ ̇ð Þ1−n 2‐shear thinning region; W > 1
τ γ ̇η∞=η0 3 ‐ high shear rate; W< 1

8<
:

ð19Þ

Only the second shear rate,γ ̇
2, falls into a shear rate region

withW > 1. This suggests that the shear thinning strength has
to exceed the critical value of unity at some intermediate shear
rate for shear banding to occur even if the shear bands them-
selves are regions of W < 1.

The mere existence of a limiting high shear viscosity, η∞,
stabilizes the flow. For shear banding to occur, η∞ has to be
much below the zero shear viscosity, η∞< <η0. Figure 5 dem-
onstrates this phenomenon for high-n Carreau-Yasuda fluids.
They remain stable up to high n values (W < 1) when the two
viscosity values are close together. Even a decade of differ-
ence between η∞ and η0 does not seem to be enough for shear
banding to set in.

Using the Carreau-Yasuda equation, Eq. 17, together with
the kinematic constraint, Eq. 2, and the equations for the
stress, Eq. 5, one could calculate the shear rate in the bands
and the band thickness by minimizing the rate of energy dis-
sipation. This, however, would exceed the immediate objec-
tive of this brief communication.

Discussion

TheW-criterion confirms (as it should) the well-known stability
of polymer melt and solutions. Their typical shear thinningmay
reach W-values of 0.4 to 0.7, but never gets close to Wc = 1.

Fig. 3 High-n Carreau-Yasuda fluids with viscosity ratio η∞/η0 = 0.01
and exponent a = 2. The shear rate becomes triple valued at
intermediate shear stress as indicated in the right figure for n = 1.6.

Parameters η0 and τ of Eq. 17 do not have to be specified in the
dimensionless representation. Anomalously strong shear thinning is
modeled here by choosing n > 1
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TheW-criterion predicts the leveling off of the shear stress
at increasing shear rates, which already had been reported by
Berret (2005) and many others since. At least qualitatively,
there seems to be agreement of the experimental data with
the stress evolution in Fig. 3.

The W-criterion can be expressed in terms of the steady
shear stress σ by rearranging

W γ ̇ð Þ ¼ −
∂ logη

∂ log γ ̇
¼ −

∂ logσ

∂ log γ ̇
þ 1: ð20Þ

Integration results in

σ ¼ Cγ ̇ 1−Wð Þ: ð21Þ

In case of W > 1, the shear stress decays with increasing
shear rate. This decaying shear stress function, also shown
in Figs. 2 and 3, is a commonly used criterion for the

occurrence of steady shear banding in homogeneous
fluids (Moorcroft and Fielding 2013). W = 1 describes
the onset condition, σ = constant. It should be mentioned,
however, that a sigmoidal flow curve, having a decaying
shear stress at intermediate shear rates, has also been re-
ported to cause elastic instabilities in flows such as melt
fracture (Yerushalmi et al. 1970, Petrie and Denn 1976).
Such elastic instabilities, where the entire flow alternates
between two or more states, might be related to shear
banding in some complicated way.

Generally, the condition for band development, exceeding
Wc = 1, amounts to a severe drop in shear viscosity. A shear-
induced structural breakdown may be able to achieve such
viscosity drop in complex fluids of fragile structure (surfac-
tants, colloidal gels, coacervates). It will not matter whether
the structural breakdown is reversible or irreversible. The
banding might generate new structural states in sheared sam-
ples. Very few viscosity data are available. More experiments
are needed for determiningW-values for such highly sensitive
(to shear) materials.

The above analysis postulates the existence of a con-
tinuous viscosity function up to high shear rates. Not all
shear banding fluids might provide such behavior, espe-
cially those with yield stress (Besseling et al. 2010,
Ovarlez et al. 2009, 2013). This needs to be looked into.
It will require a more extensive study to analyze published
shear banding data in terms of the W-criterion with the
aim of confirming or dismissing it for certain material
groups.

As mentioned above, the steady shear viscosity cannot
be measured any more when shear banding takes over.
However, there might be a possibility to overcome this
problem. In case of two stable bands, for instance, it
might be possible to measure the shear rates in the two
bands, the relative band sizes, and the shear stress and use
these measurements to recreate the η γ ̇ð Þ and σ γ ̇ð Þ plots
along the lines of Fig. 3. In this way, the viscosity func-
tion might be extracted in spite of shear banding.
However, a more complete model for stable bands will
be needed for that purpose. This brief communication on-
ly concerns the onset conditions for shear bands.

The above analysis is based on the steady shear viscos-
ity and misses out on the transient character of the band
formation in time-dependent flows and the fluctuations of
the interface between bands (flat interface simplification).
The dynamics of shear band formation cannot be predict-
ed without expanding the analysis to a full viscoelastic
model. Such expansion is not considered in this brief
communication.

In a multi-component material, shear bandingmight also be
the result of flow-induced composition gradients.
Inhomogeneity adds a whole new level of complexity which
is beyond consideration here.

Fig. 4 Three asymptotes for sections of the shear stress function
demonstrate the origin of three shear rates at intermediate stress.
Parameter n = 1.6. The asymptotes are number-marked according to
Eq. 19. The shear thinning region, using parameters of Fig. 3, is too
small for the stress to get close to asymptote no. 2. However, when
increasing the difference between the two leading viscosities, η∞/η0,
shear thinning increases and the stress approaches asymptote no. 2
more clearly (dashed line with deep minimum)

Fig. 5 Wmax for Carreau-Yasuda fluids for n > 1 and various η∞/η0.
According to the W-criterion, η∞/η0 = 0.1 stabilizes the flow up to high
n values while complex fluids with η∞/η0 = 0.01 and 0.001 might
destabilize and form bands under suitable conditions
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Conclusion

W > 1 means that there are shearing conditions in which shear
thinning is so strong that the stress decays at increasing shear
rates. Instability occurs only if a sample is actually able to
access the shearing at W > 1. The W-criterion also predicts
that low-W materials, defined by a W γ ̇ð Þ below Wc = 1 at
all shear rates, will always be stable. The existence of a limit-
ing high shear rate viscosity, η∞, potentially stabilizes shear
flows, which otherwise would develop shear bands. The range
of validity of the W-criterion needs to be tested further and is
planned for the future, but it would exceed this brief commu-
nication by far.
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