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Abstract

Several observations of self-similar relaxation behavior have been reviewed and grouped. Parameters are the exponent
of the self-similar spectra, the front factor and the upper and lower bound of the self-similar region. Properties of
self-similar spectra have been explored for negative and for positive exponent values.

1. Introduction

Polymeric materials relax with a broad distribu-
tion of relaxation modes. The longer modes origi-
nate from the motion of large molecular chain
segments and short modes depend on the small-
scale chemical detail. Extra long relaxation modes
arise from large-scale structures which some poly-
mers are able to form due to phase separation or
due to associations on molecular or particular
level. The distribution of relaxation modes repres-
ents the material structure in some convoluted way.
The search for a one-to-one relation between relax-
ation spectrum and molecular structure has attrac-
ted much attention, not only because of its practical
importance but also from a fundamental point of
view,

It is most remarkable that some materials relax
with a very simple power law over a wide time
window as will be discussed below. Such behavior
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has been termed ‘self-similar’ or ‘scale invariant'
since it is the same at any time scale of observation
(within the given time window). Self-similar relax-
ation has been associated with sell-similar struc-
tures on the molecular and supra molecular level
and, for suspensions and emulsions, on particulate
level.

The relaxation time spectrum H (1) (for example,
Ref [1]), abbreviated as ‘spectrum’ in the following,
defines the linear viscoelastic behavior of a mate-
rial. The spectrum is a non-negative function (Ref.
[2]) which exists in the range of relaxation times
0 < 1< dyax- An important material property is
the longest relaxation time, 4,,,, beyond which the
spectrum vanishes, H(1) = 0 for 1 > 1,,,,. The La-
place transform of the spectrum defines the transi-
ent component of the relaxation modulus (linear
relaxation function)

Arua

G() = Ge+j H(2)e WA (dA/A), (1)

0

which often serves as the viscoelastic characteristic
of materials. The longest relaxation time 1.,
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prescribes the upper bound of the integral. Solid
materials are distinguished by a finite equilibrium
modulus, G, > 0, while liquids have no permanent
contribution, G, = 0. This study is concerned with
the transient part of the spectrum, only. When
describing experiments, we will evaluate both fun-
ctions G(t) and H(4) in search of patterns in the
relaxation behavior. Most researchers prefer to use
G(t) instead of H(1) since the relaxation modulus
appears directly in the equation for the stress.
Molecular theories also seem to have focused on
G(t) and not on H(A).

Direct measurement of the spectrum is impos-
sible, but many methods have been proposed to
somehow extract H(4) from the stress response to
various strain histories. We will discuss self-simi-
larity of the spectrum in conjunction with such
stress—strain relations (called ‘linear viscoelastic
material functions’). Appropriately measured
material functions can be analyzed through the
classical equation of linear viscoelasticity (for
example, Ref. [17)

" ¢

) = J , G(t—1)2D() dr, @)

with T{t) being the stress tensor and D{t') the rate of
strain tensor, — oo <{' <t The relaxation
modulus G(t — ) identifies the material. The linear
viscoelastic equation applies for strains which are
so small that the material can maintain its equilib-
rium state.

Small amplitude oscillatory shear often serves
the purpose of determining G(t) or H(4). Its shear
stress response is conveniently decomposed into an
in-phase component with the strain and an out-of-
phase component, the storage modulus G’ and the
loss modulus G™:
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The equilibrium modulus G, affects the storage
modulus only. The longest relaxation time again
defines the upper bound of the integrals. Inversion
of these integrals gives H(4).

The zero shear viscosity and the first normal
stress coelfficient (for example, Rel. [17])

A

Ara "
;;(,:J H(1)d2 and ¢1=2j H(%) 1di(4)

0 0

represent the behavior in steady shear fiow at low
shear rates. p and v, can be combined for evaluat-
ing the equilibrium compliance [1]

o= 2 nd). (5)

The spectrum defines all these material functions,
however, it is weighted differently in steady shear
than in the dynamic mechanical experiment. Dy-
namic mechanical experiments have the advantage
of being spectroscopic. This is the reason why they
are often preferred to measuring nq, t,, G(t), or
creep compliance J{(t).

In this study, several materials will be discussed
for which the relaxation is self-similar over a
range of timescales. An attempt will be made to
group materials with a common origin of self-
similarity.

2. Properties of self-similar spectra

Self-similar  relaxation expresses itsell in
a power-law spectrum

H(A) = Hy (A2 for k, < 1< 4,, (6)

where Hg and 1, are constants. The exponent may
adopt negative or positive values, however, with
different consequences and limitations. These are
discussed as follows:

No material is known which would relax in
a power law at all timescales (or length scales).
Self-similarity only governs over a finite range of
relaxation times, i.e. between a lower and an upper
limit, 4, and 2,, which are material specific. The
time window has to be sufficiently large before
sell-similarity becomes recognizable in material
functions. As an example, the self-similar relaxation
modulus might be flanked by more complicated
relaxation modes at short and at long times as

e
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demonstrated by inserting Eq. (6) into Eq. (1):
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A

self-similar part of the spectrum

In this study we analyze sell-similar behavior of
materials with a sufficiently wide time window,
Ay>> Az End effects will not be addressed further in
this study. :

2.1. Self-similar relaxation with negative exponent
value

For negative relaxation exponent values we will
use symbol — n. The self-similar spectrum has the
form

H(A)= Hq (Afdo)™"
withQ<n<l1 forl, <i<i,. (8)

The spectrum has only two independent para-
meters since several constants are lumped into the
factor (HyAg ™). The front factor Hy (Pa) and the
characteristic time A, (s) depend on the specific
choice of material. Various values have been as-
signed in the literature.

Rheological properties due to this self-similar
spectrum have been mapped out by Larson [4] and
Ferry [1]. If self-similarity extends over a suffi-
ciently wide time window, approximate solutions
for the relaxation modulus G(¢), Eq. (1), might be
obtained by neglecting the end effects

G(t) — G,

4] v

= da
— Ho " /)" e = Ho T @A) )

and similarly for the dynamic moduli G'(w), G" (w),
Eqgs. (3)
G'=Hy F(n) I (1 — n)cos(nr/2) (Aow)", (10)

G = Ho I'(n) I'(1 — n)sin(nn/2) (low)’, (1)

where I'(x) is the gamma function. These solutions
of the idealized problem are a good approximation
for the behavior within a time window A, < t < A,
or the corresponding frequency window
1/4, < w < 1/4,. Truncation effects can be seen
near the edges A, and A, The upper limit may
diverge to infinity, 1, — oo, without making the
power-law spectrum inconsistent, 1, — oo is the
attribute of liquid—solid transitions (ref. [3]) as is
discussed below.

Self-similar behavior is most obvious when it
occurs in this form, i.e. with a negative exponent
and a self-similar region which extends over several
decades in time or [frequency. G(¢), G'(w), G"(w),
and H(A) all adopt power-law format and their
self-similarity has been used interchangeably in the
literature. Less obvious is the self-similar behavior
for positive exponent values.

2.2, Self-similar relaxation with positive exponent
value

For positive exponent values, we use symbaol
m with m > 0. The spectrum has the same format as
in Eq. (8), H(4) = H, (1/20)", however, the positive
exponent results in a completely different behavior.
One important difference is that the upper limit of
the spectrum, 4,, has to be finite in order to avoid
divergence of the linear viscoelastic material fun-
ctions. This prevents the use of approximate solu-
tions of the above type, Egs. (9)-(11).

Spectra with a positive exponent may be ex-
plored for the ideal case of power-law relaxation
over all times up to the longest relaxation time,

st

H(Z) = Ho (4/ Amaz)™

withm >0 forO< 1< 2, (12)
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and H(1) =0 for 4., < 4. In this context, 1, is
always finite and is chosen here as the characteristic
time of the spectrum. Material functions of steady
shear flow

A
met HO A
= H()di=—7"=
= [0 @ =St
- 2H 12
=2 HA)Adl=—"7= 1
b=2 | T Ho Lar =T 13

have explicit solutions. However, even for this ideal
spectrum, the relaxation modulus has to be
evaluated numerically. It does not have any simple
form which could be recognized as self-similar be-
havior.

3. Observations of self-similar relaxation behavior

Self-similar relaxation, in one way or another,
has been observed experimentally for a variety of
materials (specific molecular structure and com-
position) and, independently, it also was predicted
by several molecular dynamics models of polymeric
liquids. The above ideal cases of sell-similar behav-
lor, Eqgs. (8) and (12), are the basis for comparing
rheological observations as reported in the litera-
ture. Common properties will be discussed in terms
of linear viscoelastic material functions. Regulari-
ties in the patterns will be interpreted as behavior of
a more general type,

Observations of self-similarity will be reported
chronologically. Two major groups can be distin-
guished roughly, one in which the self-similarity
develops as an expression of molecular connectivity
(supra molecular structures), and the other in which
molecular dynamics plays the major role.

3:1. Connectivity transitions

3.1.1. Transition to high-frequency glass behavior

Tobolsky [5] found that the power-law spec-
trum, Eq. (8), with a negative exponent captures the
observed relaxation behavior of polymeric liquids
and solids at the transition from the entanglement
regime to the glass. Experimental values for the
exponent are in between — 0.6 and — 0.7. The
Laplace transform of this spectrum gives a power-
law relaxation modulus as shown in Eq. (9).

A slightly modified form of the spectrum (Ref.
[6]) is commeonly used for describing the glass tran-
sition behavior of polymeric solids:

G(t) =G, + (G, — G) (1 +t/4,)™" (14)

This empirical equation fits the glass transition as
well as the glass behavior. G, and G, are the equilib-
rium modulus and the modulus of the glass, i.e. the
limits of the modulus at very long times and very
sort times. A is the characteristic time for the dy-
namically induced crossover from the entangle-
ment behavior to the glass.

For highly entangled polymeric liquids, To-
bolsky [5] proposed to combine the power-law
spectrum for the glass transition with a ‘box’ spec-
trum for the entanglement region, 4 > A.. This box
spectrum could not be verified experimentally and,
thus, will not be discussed here. The experimentally
observed shape of the spectrum for the entangle-
ment region is fundamentally different as will be
shown below.

3.1.2. Phase-separated block-copolymers

Microphase separation is known to increase the
low-frequency moduli of block copolymers (Refs.
[7-9]). For a di-block copolymer at low rates of
shear, Bates [10] and Koppi et al. [11] observed
power-law relaxation, eq. (8), with an exponent of
— 0.5. The power-law relaxation is not associated
with the instant of transition itsell but it prevails at
temperatures far into the micro-phase-separated
region. It is property of the ordered structure. The
power-law relaxation data of Koppi et al, for in-
stance, were taken 60K below the order
—disorder transition temperature.

3.1.3. Phase-separated polymer blends

Strongly phase-separated polymer blends, above
the melting temperatures and glass transition tem-
peratures of the components, can show a power-
law relaxation behavior at low frequencies or long
times (Refs. [12,13]). The phenomenon occurs far
away from the coexistence temperature. It cannot
be associated with the phase transition but is
a property of the phase-separated structure. At very
long times (outside the experimental frequency win-
dow), the material is expected to flow like a typical
liquid.

Taas
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3.1.4. Cross-linking polymers near their gel point

The extent of cross-linking, denoted as p with
0 < p < 1, is a measure of the growing molecular
sizes during chemical gelation. The critical extent of
cross-linking, p., marks the pel point. The approach
of and transition through the gel point can be
recognized by the growth and decay of the longest
relaxation time, A, This is accompanied by
a straightening of the relaxation modulus which, in
the close vicinity of the gel point, reduces to
a power law (Refs. [14-16]):

H() = Ho (i)™ and
G(t) = Ho I'(n) (¢/26)™" for Ao < A< dpae. (15)

Beyond the gel point, the spectrum shortens again
{Amax decays). The self-similar spectrum (CW-spec-
trum) is only characteristic for the critical region
near the gel point.

The upper limit of the self-similar behavior co-
incides with the longest relaxation time, A, = Az
which depends on the distance from the gel point,

IP—P:|:
Amux""lp_pc|_a1 e=5+2z, (16)

The critical exponent for the longest relaxation
time, &, is given as the sum of the critical exponents,
s and z, of the viscosity and the equilibrium
modulus near the gel point (Refs. [3,17-207). In the
limiting case of the critical gel (a sample being
exactly at the gel point, p =p.), the longest
relaxation time diverges to infinity, d,,,, —+ o0, and
the self-similar behavior is found for the terminal
zone. The lower limit of the CW-sectrum, Ag, de-
notes the crossover to the glass behavior (for short
precursor molecules) or to entanglement behavior
(for long precursor molecules).

Soft critical gels have a low strength, § = H,
I'(n) A, and a high relaxation exponent, n — 1 (Refl.
[21]). This can be achieved by several different
methods, for instance by choosing low molecular
weight precursors (Ref. [18,22,23]), by adding an
inert diluent (Refs. [21,24]), or by selecting a low
stoichiometric ratio (Refs. [16,25,26]). Vice versa,
stiff critical gels (high § and low n — 0) can be made
by choosing undiluted polymers of high molecular
weight (Refs. [14-16,21,247). Muthukumar [27] at-

tributed this observed molecular weight effect to
screening.

3.1.5. Physical gelation

The spectrum of polyvinyl chloride plastisols
(Ref. [28]) and thermoplastic elastomers (Refs.
[29,30]) during solidification (due to a quench be-
low the respective crystallization temperature)
follows the same evolution as the spectrum of
chemically cross-linking polymers. The longest re-
laxation time grows in the approach of the gel point
and the spectrum straightens out into a power-law
form. Beyond the gel point, the spectrum shortens
again and a permanent contribution, G,, builds up.

3.2. Molecular dynamics

3.2.1. Spectrum for Rouse chains

Rouse [31] proposed a model for the motion of
linear macromolecules and derived a spectrum
which can be written in form of a discrete relax-
ation modulus

et (17)

Q
=

Il

[in]

(=]
s

]
-

At short times (t/lg<«l) or at high frequencies
(wAg>»1), this modulus reduces to power-law for-
mat with a negative power-law exponent of — 0.5.
Ap is the longest relaxation time of the spectrum.
Zimm [32] extended the model, including ‘hy-
drodynamic interaction’ between segments of the
same chain, and derived an exponent of 2/3. De-
tailed descriptions of these theories can be found in
the books by Ferry [1], Bird et al. [33] and Doi and
Edwards [34]. Rouse and Zimm behavior has been
found with a range of low molecular weight poly-
mer melts and solutions (Ref. [1]).

The power-law behavior of the Rouse model
becomes more obvious when realizing that the
above discrete spectrum is very closely resembled
by a continuous spectrum

HA) = go(A/2e)~%% for 1< . (18)

A simple cut-off is sufficient at long times, e.g.
H(A) =0 for 15 < A. The ( — 0.5)-exponent is pre-
scribed by the Rouse model. The equivalence of egs.
(17) and (18) can be seen when calculating G’ and
G" for both spectra and plotting them against each

-
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other. The difference is much smaller than any G,
G" experiment would be able to detect. An equiva-
lent power law would represent the Zimm spec-
trum, however, with an exponent of — 2/3.

3.2.2. Spectrum of polymers with long linear flexible
molecules

Doi [35] predicted the relaxation function of
polymers on the basis of a fixed tube model as
proposed by de Gennes [36]. Doi’s discrete spec-
trum can be expressed in continuous form with
a positive relaxation exponent of 0.5 and a cut-off
at the longest relaxation time A,

H(1) = 0.5 G§ (A Amax)™®  fOr 29 < 1 < Jas (19)

and H(A) = 0 for 4 > A,,,. Gy is the so-called pla-
teau modulus. The theory predicts a 3rd power
molecular weight dependence of the longest relax-
ation time which is not very far from the experi-
mentally observed value of 3.4. It gives much in-
sight into the dynamics of macromolecules but, as
recognized by Doi and Edwards [34], predictions
are not quantitative in the entanglement region
where much experimental information is available,

3.2.3. Spectrum of polymers with branched
molecular architecture

A polymer melt with comb-like molecules was
found to exhibit power-law relaxation at intermedi-
ate frequencies (Rell [37]). Due to a value of — 0.5
for the relaxation exponent, the behavior was at-
tributed to Rouse-like relaxation.

Molecules with fractal structure have been pre-
dicted to have a power-law relaxation spectrum at
low frequencies (Refs. [38—40]).

Microgels were found to relax with a power-law
spectrum over up to 5 decades in frequency (Ref.
[41]). The behavior might be attributed to the
fractal structure of the molecules.

3.2.4. Broadly polydisperse polyethylene melts
Broadening of the molecular weight distribution
results in a smearing out of the crossover from the
flow regime to the entanglement regime. As a con-
sequence, the relaxation modulus seems to be of
power-law type at intermediate timescales (Refs.
[42,4]). The power-law modulus, however, is not
a locally sensitive measure of relaxation. Data of

other (more sensitive) material functions of broadly
polydisperse polymers, such as the dynamic
moduli, ¢' and G", could not be modeled satisfac-
torily with a power-law spectrum.,

3.2.5. Spectrum of polymer melts with highly
entangled linear molecules of uniform length

Recent advances in the determination of relax-
ation time spectra from dynamic mechanical data
made it possible to revisit the problem of Doi [35]
and determine the spectrum experimentally. The
result is a sell-similar relaxation time spectrum
(BSW spectrum) in the entanglement and flow
Zome, i.e., at the long timescales of the polymer melt
(Refs. [43,447)

H(2) = mGR (A dma)"  fOr 2 <2< Joaes (20)

and H(4) =0 for 4., <A The scaling exponent
m and the plateau modulus G§ are material specific
parameters, Experimental values between m = 0.2
and 0.25 were found for a range of polymers of
different chemistry. The longest relaxation time of
the measured moduli, 4,,,,, increases with the 3.4th
power of the molecular weight (Refs. [43,44]). The
lower limit of the self-similar spectrum, 1, is given
by the crossover to the high-frequency glass
behavior.

The high-frequency behavior is independent of
polymer molecular weight and can be described by
the empirical spectrum which Tobolsky [5] has
suggested. Without detailed experimental informa-
tion on the crossover from the entanglement to the
high-frequency glass behavior, we chose the most
simple case of a linear superposition of the two
limiting power laws;

H(A)=mGY ’:(%) + (&i) :I for A< A,,,.

(21)

A typical example of dynamic mechanical data, G’
and G", and the corresponding spectrum is shown
in Figs. 1--3.

The BSW-spectrum very closely represents data
of a variety of chemically different polymers as long
as the distribution of molecular mass is sufficiently
narrow (as achieved in polymer standards). It does
not seem to be important here that real samples are

—
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Fig. 1. Storage moduius of nearly monodisperse polybutadiene melts (Ref. [44]). Lines are calculated with the spectra of Fig. 3: the
continuous spectra of Eq. (21) and discrete spectra (parsimonious model) as determined by the IRIS program (Rel. [55]).
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Fig. 2. Loss modulus of nearly monodisperse polybutadiene melts (Ref. [44]). Lines are calculated with the spectra of Fig. 3: the
continuous spectra of Eq. (21) and discrete spectra (parsimonious model) as determined by the IRIS program (Refl. [55]).

not perfectly monodisperse. Prerequisite, however,
is a sufficiently high molecular weight so that
’J‘mux>>’1c-

4. Discussion

Very different molecular and supra molecular
structures can relax with a power-law distribution

of relaxation modes. A one-to-one correlation be-
tween relaxation and structure seems to be out of
reach at the current state of knowledge. At least,
data interpretation will require additional informa-
tion about the molecular properties (such as transi-
tion temperatures, chemical stability, cross-linking
or nol, multicomponent or single component).
Two special cases, however, allow more definite

seeas
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Fig. 3. BSW-spectra of nearly monodisperse polybutadiene malts (Ref. [44]), see Eq. (21)). The discrete modes refer to a modulus
Gty = Z;’Ll gre™"* with spacings a; between the modes. The parsimonious model (PM) of Baumgirtel et al. [55] seeks an optimum
number of relaxation modes, N, in order to avoid overfitting or underfitting of the data,

conclusions: the polymer melt with long linear flex-
ible molecules of uniform length and the materials
at a liquid-solid transition of second order. Each of
these materials has a unique spectrum which allows
identification of the underlying structure.

The most simple molecular architecture for
a polymer, that of long linear flexible chains of
uniform length, already results in a very complic-
ated relaxation behavior with a broad distribution
of relaxation times. However, the linear viscoelastic
properties are known to follow a unique pattern
(Refs. [45-49]). Therefore, the corresponding relax-
ation time spectrum should also be unique. This
spectrum has been proposed to be self-similar and
to have a positive exponent (BSW-spectrum).
Small deviations from ideal monodispersity
broaden the crossover from the flow to the en-
tanglement regime (and hence affect the zero shear
compliance; see Ref. [507), but they do not seem to
affect the main part of the spectrum in any signifi-
cant way.

The BSW-spectrum has been found empirically
by inverting rheological data and by checking its
predictions against experiments. The inversion of
the modulus data does not have a unique solution.
However, the simplicity of the BSW-spectrum is
appealing to us, even il we realize that other, more

complicated spectra may result in an equally close
representation of the data.

The experimentally found spectrum is surprising-
ly close to the spectrum which Doi [35] has derived
from a molecular model. Only two changes are
necessary: the value of the relaxation exponent has
to be reduced from m = 0.5 to about m = 0.2-0.25,
and the molecular weight dependence of the longest
relaxation time has to be increased from the 3rd to
the 3.4th power. This shows the sensitivity of the
viscoelastic behavior to small changes in the spec-
trum. The changes are necessary but their physical
origin is not known.

Dynamic mechanical data as shown in Figs. |
and 2 can normally be assigned to that specific
molecular structure. However, experimental details
have to be taken into account. Recently, Granick
et al. [51] found a very similar looking modulus
with molecules of low molecular weight when
shearing them in an extremely narrow gap.

The second distinct spectrum (CW-spectrum)
was found with materials during chemical or physi-
cal gelation (which are paradigms for second order
liquid-solid transitions). The broadening of the
spectrum in the approach of the gel point, the
self-similarity of the long relaxation modes at the
gel point, and the shrinking of the spectrum beyond

[
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the gel point make a unique pattern. The broaden-
ing of the spectrum is an expression of increasing
connectivity. Molecular motions are coupled over
wider and wider distances. The distance diverges at
the gel point and becomes small again as the solidi-
fication proceeds. This structural evolution is re-
flected in the linear viscoelastic properties. Vis-
coelasticity and structure are closely correlated
near the liquid—solid transition.

The divergence of the longest relaxation time in
physical gelation is limited by the average life time
of the physical junctions. The long life time of
crystalline junctions resulted in a behavior compar-
able to chemical gelation. Little is known about
physical gels with junctions of shorter life time.
Examples would be percolating suspensions, poly-
mer melts with hydrogen bonding between molecu-
les, emulsions, etc.

Sell-similar relaxation at intermediate timescale
has been found with many different structures and
for a variety of reasons. Self-similar relaxation of
fractal molecules and microgels can be attributed
to their self-similar molecular structure. However,
microphase separated block copolymers and (mac-
ro)phase separated polymer blends exhibit self-sim-
ilar relaxation without having a self-similar struc-
ture. In addition, broadening of the spectrum might
give the appearance of a self-similar behavior. This
has been seen with polymer melts of broadly dis-
tributed molecular weight. Self-similar relaxation is
a very interesting consequence of molecular or
supra molecular dynamics which should be ex-
plored further.

It should be mentioned that the self-similar be-
havior is not restricted to relaxation phenomena.
A power-law retardation spectrum has been re-
ported for the creep of metals (Refs. [52-54]).
Its analysis would be beyond the scope of this
study.

5. Conclusions

Self-similar scaling of the relaxation dynamics is
more an exception than the rule for polymers. If it
occurs, it is a striking phenomenon since it gives
rise to very distinct patterns in linear viscoelastic
relaxation data. These common patterns have been

recognized for several classes of materials. One of
the main parameters is the relaxation exponent.

The sign of the relaxation exponent, positive or
negative, makes a fundamental difference in the
self-similar behavior. A negative exponent has been
found with many materials at intermediate time-
scales, however, it seems to be specific for second
order liquid-solid transitions when observed in the
terminal relaxation region. Only one of the re-
viewed sell-similar materials has a positive expo-
nent. That is the polymer melt with long linear
flexible molecules of uniform length. Its entangle-
ment and flow behavior follows a power-law pat-
tern which is a surprisingly simple result.

The support of General Electric, Plastics Divi-
sion, is gratefully acknowledged.
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