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Synopsis

We suggest a very simple memory integral constitutive equation for the stress
in crosslinking polymers at their transition from liquid to solid state (gel point).
The equation allows for only a single (!) material parameter, the strength S{Pa
s2), and it is able to describe every known viscoelastic phenomenon at the gel
point. Measurements were performed on polydimethylsiloxane meodel networks
with balanced stoichiometry for which the crosslinking reaction has been stopped
at different degrees of conversion. At the gel point, the loss and storage moduli
were found to be congruent and proportional to w/? over a wide range of tempera-

ture (—50°C to +180°C) and five decades of frequency w. The hypothesis is made -

that this behavior is valid in the entire range 0 < w < . This congruence hy-
pothesis is consistent with the Kramers-Kronig relation and leads to a constitu-
tive equation which shows that, for our polymer, congruent functions G'(w) =
G"(w) are as much a rheological property at the gel point as are infinite viscosity
and zero equilibrium modulus. This makes it now possible to measure exactly the
instant of gelation of a crosslinking polymer without having to stop the crosslink-
ing reaction.

"INTRODUCTION

Crosslinking polymers undergo phase transition from liquid to
solid at a critical extent of reaction. This phenomenon is calied
gelation . The polymer is said to be at the gel point (GP) if its
steady shear viscosity is infinite and its equilibrium modulus is
zero. Several processes may contribute to this transition besides
the connecting of molecular strands by chemical crosslinking:
physical entanglements between the macromolecular strands,
vitrification as the glass transition temperature rises with in-
creasing extent of reaction, phase separation of the reaction com-
ponents or products, and crystallization.
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This study is not concerned with gelation in its most general
sense but with the phase transition due to chemical crosslinks
only. Several theories' 2 as well as coniputer simulations* predict
the critical extent of reaction at which the transition occurs. The
transition is understood to occur when at least one of the
molecules of the crosslinking polymer has grown very large and
its size reaches dimensions of the order of the macroscopic sam-
ple.® Rheological experiments will be analyzed in which we
stayed away from other phase transition such as glass transi-
tion, or phase separation. Physical entanglements were avoided,
at least initially, by choosing a prepolymer molecular weight be-
low the entanglement limit. The objective of this work is the
study of gelation without the interference of other critical phe-
nomena.

Previous experiments during the crosslinking reaction of a net-
work polymer give an indication of the increasing crosslink den-
sity without giving sufficient information for formulating con-
stitutive equations. Problems arise from the fact that the stress in
a crosslinking polymer is time dependent due to two different
phenomena: the viscoelastic behavior in transient deformations
and the changing chemical composition as the network is forming
with time. Measurement of the viscoelastic behavior, however,
requires a sample with stable chemical composition during the
entire experiment. For these reasons, Chambon and Winter®
studied viscoelastic behavior after having stopped the crosslink-
ing reaction.

Presently, there are two accepted methods for the rheological
study of crosslinking polymers. In the first method,® 2 the poly-
mer in its liquid state is subjected to shear flow. The measured
viscosity increases with increasing extent of reaction until the
st¥ess reaches the limit of the instrument or until the material
breaks. For characterization beyond GP, the material is subjected
to strain and the steady state modulus is measured during its
growth with increasing extent of reaction.?® Measurements in
either the liquid state or the solid state give reliable data away
from GP. The transition itself is defined by a singular behavior
which is not accessible to these experiments except by extrapola-
tion (see Figure 1). The exact time of GP cannot be determined
with this method.

In the second method,'®® small amplitude oscillatory shear
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Fig. 1. Schematic of steady shear. viscosity and equilibrium modulus of a
crosslinking polymer. No such experiments are possible in the close vicinity of
transition from liquid to solid.

gives the components of the complex modulus during the cross-
linking process, as shown in Figure 2. The viscous behavior of the
oligomeric material dominates the initial part of the experiment.
The loss modulus, G", is large while the storage modulus, G', is
still negligible. With increasing molecular weight, the loss mod-
ulus increases while the storage modulus rises sharply until it

_intersects and then exceeds the loss modulus. The storage mod- .

ulus keeps increasing with increasing crosslink density while the
loss modulus goes through a slight maximum. Both moduli level
off as the reaction comes tq completion.

The oscillatory shear method has the advantage of a continuous
evolution of the viscoelastic properties as the polymer goes
through GP. The data give no indication of the specific instant at
which the transition occurs. Earlier experiments'® suggest that
the intersection of G’ and G” marks the time of gelation. How-
ever, the time of intersection was found to be a function of fre-
quency of the oscillatory shear experiment. This could indicate
that the time of intersection might be close but not identical with
the transition time. The instant of gelation is strictly material
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Fig. 2. Evolution of the storage modulus G’ and the loss modulus G” of a
crosslinking PDMS in an oscillatory shear experiment at constant frequency w.

dependent and cannot depend on the frequency of the rheological
test (unless there is an influence of the flow on the chemical
reaction or there is interference of a second critical phenomenon,
such as vitrification).

A complementary result has been reported by Chambon and
Winter,® who ‘stopped the crosslinking reaction in a PDMS at
times near the G’, G" intersection. For one of the samples, the
reaction was stopped very near the time of intersection; this sam-
ple exhibited congruent G'(w) = G"(w) over more than five dec-
ades of frequency and a wide range of temperature. In this paper
we will analyze these experimental data and will suggest a new
rheological constitutive equation for network polymers at GP.
Based on this constitutive equation we will clearly demonstrate
that, in support of the empiricism of Tung and Dynes,'° GP coin-
cides with the time of intersection of G’ and G in an oscillatory
shear experiment at constant frequency.
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Fig. 3. Reduced storage and loss moduli of PDMS samples for which the reac-
tion has been stopped at intermediate states of conversion. ¢, is the instant of
intersection (see Figure 2) of G’ and G". The curves were shifted sideways (factor
A) to avoid overlap.

:

EXPERIMENTAL OBSERVATIONS

A polydimethylsiloxane (PDMS) was used for the experiments
since it provides good model networks.!' Divinyl terminated
PDMS was endlinked with a tetrasilane crosslinker. The molecu-
lar weight of the prepolymers was below the entanglement limit.
The samples were prepared at balanced stoichiometry, r = 1, and
were reacted at rest to avoid any influence of flow history. Details
of the sample preparation and the rheological experiments have
been reported earlier.’ Figure 2 shows the evolution of the stor-
age modulus G'(wo,t) and the loss modulus G"(w,?) during the
reaction. The frequency dependence of G'(w,?;) and G"(w,t;) was
measured on chemically stable samples which were prepared by
stopping the crosslinking reaction at intermediate states, ¢;, of
conversion (see Figure 3). e

Viscoelastic data at temperatures between —50°C and +180°C
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Fig. 4. Measured temperature shift factors of PDMS at GP.

could be shifted into single curves. The temperature shift factors
(Ferry, 1980) are

ar(T,Ty) = exp{% (_71,_ _ 71‘(;“)} by = % 0

The shift factor a; followed an Arrhenius relation (see Figure 4),
i.e., the experiments were performed much above the glass tran-
sition temperature. The vertical shift factor was estimated from
the changes in sample thickness with temperature. One of the
“stopped” samples, with ¢ = ¢, in Figure 3, exhibited the congru-
ency of the reduced moduli '

bTG,': = bTGZ = C(GT(D)1/2 (2)

Subscript ¢ indicates that the material of this sample with con-
gruent G’ = G" is, as will be shown below, very close to a critical
state. The material constant C is independent of temperature.
For clarification, this condition of G' = G” over the entire
range of frequency has to be distinguished from frequency-
dependent crossover points which have been observed with most



VISCOELASTICITY AT THE GEL POINT 373

polymeric liquids.'? The crossover phenomenon will not be men-
tioned further. This study is solely concerned with materials
which exhibit congruence, G' = G”, over a wide frequency range
and not just an intersection at a specific frequency value.

Linear viscoelastic theory, as applied to Eq. (2), predicts a
steady shear viscosity ’

Mo = lim (Gl/w) = C lim (0w~ Y?) = o (3)
w—0 . w—0
and an equilibrium shear modulus
G. = lim G, = C lim (w¥?) = 0 4)
w0 w—0

Infinite viscosity and zero equilibrium modulus are properties of
a material at the liquid/solid transition. However, Equations (3)
and (4) involve the zero frequency limit, which is outside the
experimental range.

It would be interesting to know the range of validity of the
power law behavior which was found to occur over more than §
decades in frequency and which we expect to continue over an
even wider range. It is important to note that measurements over
a much wider range would not be able to resolve this uncertainty.
At very low frequency, the sample would exhibit either liquid
behavior (G’ ~ w?; G” ~ w) or solid behavior (G’ = const.; G ~ ®)
since we are not able to stop the reaction precisely at the GP.
Later on in this paper when discussing the Rouse relaxation time
spectrum, we will return to this question and find that the Rouse
model would predict a power law behavior at the gel point which
actually continues to the limit of o — 0. At very high frequency,
the power law behavior might continue if it would not become
masked by the onset of glass transition as a second critical phe-
nomenon. While keeping this upper and lower frequency limit in
mind for real materials, it is unimportant for the purpose of ana-
lyzing the rubbery behavior at the gel point. We therefore hy-
pothesize that the power law is not restricted in frequency range,

G'(Tw) = G'(T,w) = Va/2 S(T)w™, 0<w<wx,
with S(T) = V2w Ca}?/by 5)

and see whether this hypothesis violates the relation of Kra-
mers'® and Kronig,'4
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which involves an integral over the entire frequency range. The
factor Vn/2 is introduced for later convenience. Equation (5) is
introduced twice into the Kramers-Kronig relation, Eq. (6), with-
out specifying the value of n (which we expect to be about ¥ from
experiment). The values of the material constant C and of the -
temperature shift factors have no influence. The resulting equa-
tion, after rearrangement,

w

1 yr M1 - yH "t dy, )

has solutions
n=>%Y ~3% % —13%. ... 8

The only valid solution, however, is n = % since n < ¥z would
predict a relaxation modulus which increases with time and
therefore would violate thermodynamic principles. (Note that
this proof is restricted to a “power law” (see Eq. (5)). It does not
exclude the possible existence of another type of function which
satisfies congruency G' = G".)

In summary, the Kramers-Kronig relation 1) confirms the ex-
perimentally found value of the exponent (n = %2); and 2) shows
that n = Y% is the only possible value. These results are rather
surprising. However, it still has to be shown that congruent G’ =
G" provides a well-defined experimental method for detecting GP.
This can be done through the use of a constitutive equation which
will be developed in the following sections.

RELAXATION MODULUS

- The extra stress in any viscoelastic liquid or solid at constant
density can be described by

t .
() = J G(t — )y dt’ 9
The relaxation modulus G(¢ — t') contains the material proper-

ties. Kinematics determines the rate of deformation tensor
(where v is velocity),
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J@') = Volz,t) + (Volx,t')T. (10)

Equation (9) is valid as long as the memorized strain is kept
within the linear region of the material. The extent of the linear
region is hard to define since a nonlinear constitutive equation is
required. However, the lack of definition is no real problem since
linear behavior can always be confirmed experimentally by re-
peated tests at increasing strain magnitude. '

Equation (9) is suitable for describing the stress in the cross-
linking material at its transition from liquid to solid since 1) it is
applicable to the liquid state as well as to the solid state; and 2)
the relaxation modulus changes smoothly during the transition
(as will be shown). The oscillatory shear data can be analyzed
through the constitutive equation: the kinematics of oscillatory
shear is introduced into Eq. (9) to define the storage and loss
moduli,

G =ow L G(?) sin (w?) dt 1y

G'(w) = w L G(?) cos (wt) dt. (12)

Congruency of G'(w) and G"(w) requires that Eqgs. (11) and (12)
are equal and proportional to /2. Fourier transform tables list a
solution for this equation. The relaxation modulus is found to
have the simple form

G(t) = St~12 (13)

The only material parameter, S[Pa s'/2], is called the “strength” of
the network at the gel point or the “GP-strength.”

This is a result which contradicts several observations which
seemed to be generally valid for viscoelastic materials: 1) a single
material constant is the only adjustable parameter here, while
viscoelastic liquids or solids require a relaxation time spectrum;
2) the modulus is infinite at the limit of zero time but the limiting
modulus of viscoelastic liquids or solids is finite; and 3) the relax-
ation does not occur exponentially in time. Further experiments
are required to establish confidence in such unusual behavior.

Equation (13) represents a continuous relaxation spectrum.
However, such a spectrum is conventionally defined as'®
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G = L B exp(—en) an )
For comparison, we equate Egs. (13) and (14) and calculate func-
tion H(\)

HO\) = S(m\)~12 (15)

It is interesting to note that at GP, the material behaves like
the polymer component of the Rouse model® for dilute polymer
solutions at the limit of high frequency,

1 < Ay (16)

For polymer solutions, the Rouse limit is reached by applying
high frequencies.!?> However, this limit can also be reached by
generating a material of extremely long relaxation time. At the
gel point, the relaxation time is infinitely long and the power law
behavior can be expected even at the limit of @ — 0. This coinci-
dence with the Rouse behavior suggests the possibility of express-
ing the relaxation modulus as a sum of exponential functions as is
often done for viscoelastic liquids. The discrete spectrum at GP
can then be written as '

GO =St = lim 28 N nwa . an
= 2, X
The spacing of the relaxation times is the same as in a Rouse
spectrum. The spectrum is normalized to obtain the value S at ¢
= 1s. No additional material parameter needs to be introduced
when defining the discrete spectrum.
For modeling the rheological behavior in the vicinity of GP, we
suggest using Eq.. (17), however, with a finite maximum relax-
ation time and an equilibrium modulus (for ¢ > t.).

STRESS AT GEL POINT

The constitutive equation for the extra stress, Eq. (9), with the
relaxation modulus, Eq. (13), takes the simple form,

) t
=S j @ — )™V dr'. (18)
Density is assumed to be constant. This equation obviously pre-
dicts congruent G'(w) and G"(w) since its derivation is based on
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that same condition. It now remains to be shown that Eq. (18) also
predicts the behavior at GP. Many experiments can be conceived
for defining the viscoelastic phase transition. The predictions of
Eq. (18) for transient shear viscosity and transient shear modulus
are tested here since these quantities can actually be measured in .
a shear rheometer.

The first experiment gives the transient shear viscosity during -
start-up of shear flow at constant rate: the material is at GP if the
time dependent viscosity grows to infinity without reaching
steady state. This is a more precise definition than “infinite viscos-
ity” at steady shear flow which obviously cannot be verified in an
experiment. ,

We model the stress by defining the time dependent shear rate
and introducing it into Eq. (18). The sample is kept at rest during
times ¢ < 0; at time ¢ = 0 and thereafter, the sample is sheared at
constant rate 2. The resulting shear viscosity is calculated as

712t
Yi2

t
) = =S L (¢t —¢)" V2dt' = 2St"2 for0<t. (19)

The shear viscosity grows with time without ever reaching steady
state. This satisfies the first condition of GP.

The second experiment gives the transient modulus during
shear stress relaxation at rest after a rapid strain: the material is
at GP if the stress relaxes to zero and hence the equilibrium mod-
ulus is zero. .

We again model the stress by defining the time-dependent
shear rate and by introducing it into Eq. (18). The sample is
subjected to a rapid shear experiment with a shear rate, '

Ofort <O,
Y12(t) = { Yo for 0 <t <ty
0 for ¢, < t. (20)

The total shear strain of this experiment amounts to yolo.
With this strain history, the transient modulus is calculated as

to
gt = 12D =§J (¢ — V24t ty <t

Yolo Lo o

= St V221 + (1 — f/)V2) (21)
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The duration, ¢y, of the shearing motion in a rapid strain experi-
ment is very short compared to that of the relaxation experiment.
The equation for the transient shear modulus simplifies to

&) = St~ ' (22)

as expected from the equation for the relaxation modulus. The
transient shear modulus approaches zero at long times. There-
fore, the equilibrium modulus is equal to zero. This satisfies the
second criterion of GP.

In summary, the constitutive equation, Eq. (18), is able to de-
scribe the known rheological phenomena at GP. Analysis of the
experiments confirms that congruent G’ and G” is a property of
the PDMS polymer at GP.

FINITE STRAIN MEASURE

An infinitesimal strain measure was selected when formulat-
ing the constitutive equation. This is permissible for studying
material behavior in the limit of very small strain. However,
continuum mechanics principles (objectivity) are violated by such
an equation when applied to finite strains. The  infinitesimal
strain measure has to be replaced by a finite strain measure.
Possible formulations for the stress are

1) = -8 Jt @ - t')‘”z%(gfl(t’)) dt’ 23
or
_ S N=3/2 [(v=1(g0 )
;(t)-gf ¢ - )32 [Cr¢) — 1]dt (24)

with a Finger strain tensor C; 1(¢') and a unit tensor 1, definitions
of which are given in standard continuum mechanics texts.
Volume changes are assumed to be negligibly small (p = const.).
The two equations are identical; transformation is possible by
partial integration. The very few available experimental data
were taken at small strain and therefore do not give any indica-
tion of a suitable choice of finite strain measure. Behavior at
finite strain will be investigated in a later study.
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STRENGTH OF THE NETWORK AT THE GEL POINT

The only material parameter in the constitutive equation, the
strength S, can be measured in an oscillatory shear experiment
without stopping the crosslinking reaction. The value of S is de-
termined by G’ at the time of its intersection with G”, as shown in
Figure 2.

S = Gl [mwe/2]7Y2, (25)

where w, is the frequency of the experiment. The PDMS has a
strength of 226 Pa s2 at T'= 34°C. The temperature dependence
is found to be

S(T) = S(To)ar?/br (26)

S decreases with temperature.

CONCLUSIONS

An extremely simple relation between stress and strain, Egs.
(18) or (23), describes the knownr rheological phenomena in a
polydimethylsiloxane at its gel point (GP). The clarity and sim-
plicity of this relation (one material parameter only) implies that
it might be universally valid for endlinking polymers of balanced
stoichiometry. However, experiments on other polymer systems
are needed for support of such a far-reaching conclusion.

The constitutive equation, Eq. (18), is based on the congruence
hypothesis Eq. (5), which says that there exists an intermediate
state of the material at which G'(w) and G"(w) are congruent
functions in the entire range 0 < o < o,

A new material property has been defined: the strength S with
a dimension of Pa s¥2. It is easily measured in a single oscillatory
shear experiment during the crosslinking reaction. S depends, in
some general way which is yet unknown, on molecular structure.
For engineering applications, one would like to know how S de-
pends on reaction conditions and whether there exists a relation
between S and final network properties after complete conver-
sion.

The transition from viscoelastic liquid to viscoelastic solid is a
gradual one. There is no discontinuity in the rheological behav-
ior. The rheological constitutive equation of the GP-network, Eq.
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Fig. 5. Evolution of rheological behavior of a crosslinking polymer (at con-
stant density) with three idealized states: the Newtonian liquid at the beginning
of the reaction, the viscoelastic transition network at a critical conversion, and the
Hookean solid at completion of reaction. Each of the three idealized states is
described by a constitutive equation with a single material parameter. The equa-
tions of the Hookean solid and the GP-network are written in a form which is
limited to infinitesimal strain.

(18), describes a limiting behavior as shown in Figure 5: The
viscoelastic liquid is bounded by the purely viscous limit (Newto-
nian liquid) and by the viscoelastic transition limit (GP-network);
the viscoelastic solid is bounded by the viscoelastic transition
limit (GP-network) and the purely elastic limit (Hookean solid).
Each of the limiting behaviors is characterized by an extremely
simple constitutive equation which contains only one material
parameter even though constitutive equations for intermediate
materials (viscoelastic liquid and viscoelastic solid) are very com-
plex. This is a highly significant result in several respects: 1)
viscoelastic liquids and solids can now be classified by their
closeness to either one of the rheological limiting behaviors; 2)
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«

the existence of the limiting behavior at GP restricts the formula-
tion of constitutive equations for viscoelastic liquids and solids;
and 3) molecular theory for GP, if it were available, would help to
formulate molecular theories of the liquid and the solid state. The
simplicity of this rheology gives rise to the hope that a molecular
theory for GP can be derived. .

For chemically crosslinking polymers, there is an interesting
difference between GP and other transitions such as the glass
transition or the melting transition. A chemically crosslinked
polymer at GP, such as the “stopped” PDMS samples of Chambon
and Winter, cannot be moved in or out of this transition by chang-
ing the temperature or the frequency of the shearing experiment.
In comparison, physically crosslinked networks undergo revers-
ible GP at critical temperature and pressure. Even so, a change in
frequency should not shift GP. One might speculate that physi-
cally and chemically crosslinked networks at GP follow the same
rheological law.

This study demonstrates that rheology is sufficient to measure
the instant of GP. It is expected that the rheologically-measured
GP coincides with the transition of other properties such as cessa-
tion of large scale molecular motion'” and appearance of an insol-
uble component in the material. Measured conversion at GP will
have to be compared with the theoretical values.! “2 A comparison
of these different properties is planned. -
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