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ABSTRACT: Critical behavior in gelation and vulcanization of polymers is discussed in the context of polymeric 
fractals. Dynamic mechanical measurements show that in the critical region a power law in the complex viscosity 
and in the modulus appears. Viscosity and modulus are calculated around the critical point and as functions 
of the extent of reaction. The power law is interpreted in terms of the fractal dimension of the cluster, and 
it is shown that this agrees with experiment if one takes swelling phenomena into account. 

1. Introduction 
A critical gel appears during a random linking process 

of subunits to larger and larger molecules. The critical gel 
divides two regimes-the liquid and the solid regime. No 
matter what type of objects are linked, they always exhibit 
a gel point if the system is disordered and if all processes 
are random.' At  the critical point the system behaves 
neither as a liquid nor as a solid on any time and length 
scale: it is believed that it forms a critical object dominated 
by its large fluctuations in structure. These fluctuations 
complicate the description of the gel, and an exact solution 
seems to be impossible. Nevertheless, scaling theory 
provides a basis for modeling this special type of liquid- 
solid transition. 

Several models for gelation have been proposed' and the 
most well-known are percolation theory2 and an aggrega- 
tion approach as reviewed by Herrmann.3 The resulting 
cluster has one common feature in all these theoretical 
models: it is self-similar; i.e., its structure has no domi- 
nating length scale, there are holes on all scales, loops on 
all scales, etc. Consider, for example, the percolation 
model. Suppose a lattice where the initial bonds are not 
conducting, and place conducting bonds on the lattice 
until, at a certain bond concentration pc ,  the system be- 
comes conducting. This is then defined as the percolation 
threshold pc ,  and the infinite cluster is formed. 

Percolation can be generalized to predict mechanical 
properties such as shear modulus, viscosity,  et^.'-^ In the 
Flory-Stockmayer4l5 theory, for instance, one has a fluid 
of small f-functional molecules. When they react and link 
up, the viscosity of the fluid increases until it diverges at 
the gel point, and a shear modulus is established. Then 
the solid is formed. 

In this paper we discuss properties of end-linking 
polymers, i.e., flexible polymer chains with reactive end 
groups and cross-linking, molecules. This process, usually 
called vulcanization,6 can be treated in the same manner 
as gelation, with a few differences and exceptions. During 
the initial period of the reaction, cross-links and chains 
start to react and form clusters of average size 9, which 
can be defined2 by a size distribution function n,: 
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Here n, depends on reaction time t ,  and a dynamical 
scaling theory can be applied in gelling and nongelling 
regimes (see for example ref 3 and references therein). 

The typical cluster becomes larger and larger and 
properties like the viscosity diverge with the diverging 

S 

'Permanent address: University of Massachusetts, Department 
of Chemical Engineering, Amherst, MA 01003. 

0024-929~/88/2221-2536$01.50 f 0 

cluster size. The linear size of the cluster diverges is given 
by 

(1.2) 

where p is the extent of reaction. Computer simulations 
in three dimensions predict Y = 0.88 for percolat i~n.~,~ 
Other exponents can be defined in analogy to phase 
transitions (see ref 2). Here we are interested in the ex- 
ponent for the zero-shear viscosity: 

70 - ( P c  - P < Pc (1.3) 

G m  - (P - PCY P > Pc (1.4) 

E - IP - Pcl-" 

and for the static modulus 

Well beyond the gel point, the network becomes strongly 
linked, i.e., most of the chains are linked together so that 
single connecting bonds or dangling ends are no longer 
critical. Then a homogeneous rubber will be formed, and 
classical theories of rubber elasticity can be applied. The 
modulus becomes purely  entropic:'^^ 

G, = NkT p - 1 (1.5) 

where N is the number of elastically effective chains and 
T the temperature. 

The infinite cluster is an ill-linked object (compare 
Figure 5), and the large spatial fluctuations of structural 
elements will not allow prediction of the elasticity by 
classical rubber theories. However, the intermediate state 
between the liquid and the solid is dominated by the 
self-similar structure. This self-similarity is not only a 
feature at the gel point but is also present at earlier stages 
of the reaction at smaller scales. The size of the self-similar 
regions are measured by a correlation length E ,  which is 
again a typical cluster size.lv3 

Consider now the pregel regime, p < pc .  For regions r 
€ E the system is self-similar within the clusters, while for 
r > E one has a fluid of clusters. Crossover properties 
around E are not studied here in detail. In the postgel 
regime, p > p c ,  one has the same situation, i.e., for r > E 
one has already a rubber while for r < 6 the system is still 
self-similar (compare Figure 5). 

One purpose of this paper is to note that 6 can be related 
to the dynamic mechanical behavior, and we suggest this 
below. Moreover, dynamic mechanic experiments provide 
a direct method to determine p c  precisely, in contrast to 
measurementsg of the static viscosity and shear modulus. 
Parameters of the fractal nature of the clusters enter into 
the frequency dependence of the viscosity and the modu- 
lus, and one can measure fractal dimensions, dynamical 
exponents, critical exponents, and swelling properties by 
this method. The main basis of the following treatment 
is the polymeric nature of the clusters, i.e., the clusters are 
made out of flexible chains, so that the cluster loses all its 

0 1988 American Chemical Society 



Macromolecules, Vol. 21, No. 8, 1988 Dynamical Critical Behavior 2537 

1g w* 
k LJ 

Figure 1. Schematic plot of the frequency dependence of the 
real and imaginary part of the dynamic modulus in the pregel 
state. Above the crossover frequency w* the typical behavior is 
a power law (here w1I2 for a stochiometrically well-balanced system, 
dashed line), while below w* typical liquid behavior is present. 

rigidity and behaves in a Brownian fashion.l0P’l 
This paper is organized as follows: In section 2 we 

discuss the main experimental points. Section 3 provides 
a simple scaling approach to the problem, and a dynamic 
scaling argument for the frequency dependence of the 
modulus is given. Section 4 uses a more refined model to 
describe the viscoelastic properties before and after the 
gel point. Critical exponents of the zero-shear viscosity 
and static modulus are predicted, within the limitations 
of the model. 

2. Experimental Motivation 
Detection of the gel point by equilibrium quantities such 

as qo and G, seem to be very difficult, since they are based 
on an extrapolartion p - p c .  Precise criteria cannot be 
realized in these experiments. In a series of papers it has 
been shown12-16 that dynamic mechanic measurements 
provide a technique for detecting the gel point precisely. 
The method has been described in detail in the above 
references, so we are brief here. 

Imagine a polymer melt in which the chains have active 
groups at the ends. The chain length is below the critical 
molecular weight, and entanglements are not of impor- 
tance. In addition, suppose that a cross-linker is added 
to the melt. This system can be characterized by rheo- 
logical measurements, and one will obtain the usual liquid 
behavior a t  low frequencies, Le., G’(w) = w2 and G’’(W) = 
w. G ’ and GI’ are the real and imaginary part of the com- 
plex modulus. Thus one will find a dynamic mechanical 
behavior that is typical for polymeric fluids.17 

Now initiate the reaction, and let some of the molecules 
link up; then stop the reaction at a time t ,  and repeat the 
rheological measurement. A power law is observed at  
higher frequencies, while at low frequencies one still has 
the classical liquid behavior. The crossover frequency a*- 
separates the two regimes. 

If the reaction goes on for some longer time t2 > tl, more 
and larger clusters will be formed, and one will still have 
the dynamic behavior shown schematically in Figure 1. 
However, the crossover frequency has been shifted to some 
lower value, and the G’ and G” curves move toward each 
other in the power law regime. Eventually there comes 
a point, at a reaction time t,, where w*- is shifted to zero, 
and the real part and imaginary parts of the complex 
modulus follow a power law over the entire range of fre- 
quencies: 

G‘- G“ - a’’ (2.1) 

The corresponding Figure 2 reduces to a straight line with 
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Figure 2. Same as in Figure 1, at the critical extent of reaction. 
The power law extends throughout the entire frequency range. 
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Figure 3. Gel above the gel point exhibiting typical solid behavior 
at low frequencies. At higher values than the crossover frequency 
one finds still a power law. 

slope n on a log-log plot. For most networks, the rheo- 
logical exponent n is equal to 1/2, except for those with 
insufficient cross-linker content;14 in the latter, larger 
values occur. An upper bound to the exponent in the 
dynamic mechanic experiment seems to be 2/3, but more 
data must be analyzed to confirm these values. Clearly, 
the frequencies discussed here probe the dynamic behavior 
on the scale of the self-similar regions, rather than on the 
scale of a single polymer chain linked in the cluster. Be- 
yond this gel point, a t  times t > t,, typical solid behavior 
will be observed at low frequencies, indicated by G’= G, 
= constant and G” = o. This is shown schematically in 
Figure 3. At later stages of the reaction the crossover 
frequency o*+, separating gel from solid behavior, will be 
shifted to higher values, and G‘and G ”  will move apart 
from each other. 

These experimental observations allow the hypothesis 
that one probes self-similar regions by varying frequen- 
cies.18 There are two main reasons supporting this idea. 
First, the power law holds over all frequencies of obser- 
vation. This above would not indicate a self-similar 
structure, since the Rouse theory also predicts a power law, 
but we cannot assume the gel to have a linear structure. 
Second, the crossover frequencies w*+ seem to depend on 
the extent of reaction p .  Each frequency o probes a length 
scale L. High frequencies correspond to small distances 
and vice versa. Thus there must be a relationship of the 
form 

0 - L-”g(L/ f )  (2.2) 

where z is some dynamical scaling exponent that we do not 
yet know, and g is a generally unknown scaling function. 
The crossover frequency now divides the power law be- 
havior from the classical liquid or solid behavior. The 
corresponding length, the correlation length, is a typical 
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Figure 4. Experimental result.'* t is the reaction time, before 
the cross-linking reaction is stopped by poisoning the catalyst. 
tc is the gel time, corresponding to the critical extent of reaction 
Pc. 

cluster size. Thus the crossover frequency obeys the scaling 
law 

w** = [l/,$]Z* i= Ip -pcl"Z* (2.3) 

The crossover frequency therefore can be taken as a 
measure of the correlation length during the gelation 
process. As diverges at  the gel point, co** becomes zero 
and the power law for G'and G"is obtained over the whole 
range of frequencies. 
As an experimental example we show a plot of log G'and 

log G" against log w in Figure 4. We recall that the fre- 
quency range is chosen so that one probes only sizes larger 
than the distance between cross-links. This ensures that 
the clusters are "seen" by the experiment rather than the 
chains between the cross-links. The intuitive picture one 
gets is shown symbolically in Figure 5. 

3. Polymeric Fractals and Simple Dynamical 
Scaling 

The linkage process can probably be described by per- 
colation, and Figure 5 may be most instructive, but in usual 
bond-percolation problems the bonds are rigid. Mechan- 
ical properties of such rigid percolating networks and 
fractals have been studied extensively,lg but we cannot use 
these results because of the rigidity of the bonds and the 
non-Brownian nature of these systems. In our case, how- 
ever, there is no rigidity in the object, and all bonds have 
to be replaced by long flexible chains.l0 As the simplest 
model for gelation and vulcanization we may adopt per- 
colation, but bear in mind that the bonds are flexible. This 
is probably the simplest way to model the properties of 
the critical gel in the context of the experiments sketched 
above. The infinite cluster is believed to be a self-similar 
object since all structural elements, i.e., single connecting 
bonds, loops, dangling ends, etc., are critical quantities. 
Their numbers diverge at  pc,  so that they appear on all 
scales of observation.20 With the replacement of rigid 
bonds by flexible chains, percolation can be used to de- 
scribe physical properties during vulcanization, as has been 
demonstrated previously.10J8 The main ideas can be 
summarized as follows. 

First consider phantom chains. Replacement of the rigid 
bonds by phantom chains does not change the connectivity 
of the fractallo (hence additional contacts between the 
chains are considered to be fictive), while the size of the 
object and the dynamical properties are affected drasti- 
cally. This should be discussed at  least in terms of the 
three basic fractal dimensions.21 The size of the original 
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Figure 5. Typical result of bond percolation (schematic). Above 
the gel point one has only finite clusters, of some typical size E. 
The clusters are supposed to be self-similar on their scale of 
extension. At the critical point the cluster extents to  the whole 
lattice. Above the gel point the size of the self-similar regions 
is decreasing again, and the lattice tends to be filled out com- 
pletely, corresponding to a well-linked network. 

fractal (on a lattice) is defined by the fractal or Hausdorff 
dimension22 df,, via the mass-radius scaling m - RGo. The 
index o corresponds to the original fractal, i.e., with rigid 
bonds.1° The dynamic properties can be studied via 
fracton dynamics21 or equivalently by a random walker 
placed on the fractal. The latter possibility suggests a 
scaling law for the root mean square displacement R of the 
random walker in a time t on the fractal, Rdm - t. The 
case d,, = 2 corresponds to classical Einstein diffusion. 
R is measured in Euclidian distances. d,, > 2 is usually 
called slow anomalous diffusion. (Hence in most cases one 
has from dynamical scaling z = d,.) The density of states 
is then given by the fracton or spectral dimension d,: 

d ,  = 2dfo/dwo (3.1) 

d ,  is an intrinsic parameter of the fractal and is fully de- 
termined by the connectivity of the object.m By replacing 
the rigid bonds by flexible chains the connectivity (and 
so d,) remains unchanged: d,  is invariant by this proce- 
dure.1° On the other hand, fractal and walk dimensions 
are altered to different values d f  and d,. Using the 
"Einstein relation" that connects the fractal-, walk-, and 
resistivity scaling exponent, one can s h o ~ ' ~ ~ ~ ~  that for 
phantom polymers, i.e., for polymers with no exluded 
volume, d ,  can be written as d ,  = d f  + 2, since the resis- 
tivity scaling exponent is r = 2 for phantom polymers. 
This special Einstein relation is obvious for a treelike 
structure (see also ref 32),  but it holds also for structures 
containing loops, as clearly explained by Cates.lo The 
reason for this is the phantom nature of the chains so that 
one can take the analogy between the resistivity, the 
phantom network, and a network of thermal springs. Thus 
one can calculate the new fractal dimension d f  by the 
general relation (3.1) to get 

(3.2) 
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This is now the fractal dimension of the ideal polymeric 
fractal (i.e., with no excluded volume) with Gaussian 
chains and a connectivity parameter d8.l0 Hence for d,  = 
1 the results for linear chains are correctly reproduced, as 
they must be. In the percolation problem one has d,  = 'I3 
independent of the spatial dimensions according to the 
AlexanderIOrbach conjecture. Since d, = is the 
mean-field value for the spectral dimension of all branched 
objects (lattice animals, Cayley treelike structures, etc.), 
we use this value for further discussions. Inserting 4/3  in 
(3.2) one obtains df = 4 in agreement with the Flory- 
Stockmayer theory4p5 for Gaussian chains. In three di- 
mensions d f  is larger then the space dimension, and so it 
is unphysical since the object cannot be packed more 
densely than the Euclidian dimension. This is clearly due 
to the phantom nature of the polymer chains; self-inter- 
actions, which alter the size of the fractal, should be taken 
into account. 

The fractal dimension in (3.2) is indeed of the same 
relevance as the phantom fractal dimension of Gaussian 
chains, and we can use mean-field arguments for the fractal 
dimension for the same fractal, but now taking excluded 
volume forces into account.1° 

The crudest treatment in this direction goes back to 
Flory.' The free energy of the object with self-interaction 
can be written6 as a sum of two terms: 

(3.3) 

The first term is the elastic or entropic part of the free 
energy, ROdf - M is the size of the ideal phantom fractal 
without excluded volume, and M is the total mass. For 
correct use of the Flory theory of swelling, Ro has to be the 
size of the ideal phantom fractal, given by (3.2). The 
second term is the mean-field approximation of the ex- 
cluded volume  interaction'^^ u is the excluded-volume 
parameter, and d is the Euclidian dimension of the em- 
bedding space. Minimizing the free energy with respect 
to R, one obtains6J0 the swollen fractal dimension: 

F = (R/Ro)2 + v W / R d  
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which gives 
Df = 2 

(3.4) 

(3.5) 

for d,  = and three dimensions. This is now the size of 
the fractal in a solvent. This result should hold in the 
reacting system even near the gelation threshold pc, where 
most properties are controlled by the largest cluster. The 
size of the largest cluster is diverging, whereas that of finite 
clusters goes to zero. Thus we may conclude that swelling 
is due to remaining unreacted chains and smaller clusters. 
One can show that polymeric fractals in three dimensions 
are always swollenz4 since the upper critical dimension is 
that for branched polymers.6 Even in a melt of clusters, 
excluded-volume forces remain important,2' in contrast to 
linear chains,25 where the upper critical dihension is 2. 
Within the framework of the Flory approach one can show 
that the result Df = 2 is valid as long as the solvent objects 
do not approach the size of the "infinite" c1Uster.6a*25 Thus 
one can conclude that (3.5) holds even in the reacting 
system.31 

Swelling is due to solvent around the big cluster. The 
solvent consists of unreacted molecules and of smaller 
clusters in the experiment described above. This implies 
that the excluded-volume forces are screened on smaller 
scales (given by the size of the unreacted chains and the 
smaller "finite" clusters) but not on scales involving larger 
parts of the infinite cluster as a typical solvent cluster. 

Screening of excluded-volume forces on the level of dis- 
tances between two cross-links is ensured by the presence 
of unreacted chains and smaller (firiite) clusters. 

To get a first crude estimate of the frequency depen- 
dence of the modulus, we put forward a simple dynamical 
scaling argument.z6 The modulus of an entropic or 
Brownian system can be written from dimensional analysis 
G - k T / V ,  where V is the volume and kT the thermal 
energy. Here V is a fractal volume, V = ldf, where [ is 
roughly the size of the cluster. The dynamical scaling 
hypothesis uses the fact that there is only one time in the 
system, and this is again given by a rariklom walker on the 
fractal. Consider ideal phantom fractals first. The time 
t in which the walker explores disthhces of order is then 
t - 1/w - E&. Using the expression for d ,  for the ideal 
polymeric phantom fractal, we would find for the fre- 
quency dependence of the modulus G(w) - wdfl(w2) = uqz, 
giving the exponents 'Iz and 2 / 3  for ideal linear and 
branched polymers, respectively. These results are in 
agreement with previous theories.6J0J1 

In our case we have to consider swollen clusters, as 
mentioned previously in the paper. Right a t  the gel 
transition we assume that the mechanical behavior is 
dominated by the infinite cluster, since the number of 
finite clusters is vanishing according to percolation theo- 
ry.'s2 Finite clusters and unreacted chains act as swelling 
agents for the infinite cluster. Therefore, we have to expect 
a different scaling behavior of the frequency dependence 
of the modulus. The proble of dynamics including ex- 

chains,28 and one has to rely on approximate solutions or 
on crude scaling arguments. To do so, let us take the big 
cluster to be swollen. The lhodulus then becomes G - 
A/EDf. Hence, Df is the swollen fractal dimension. To get 
an estimate for the tiime involved in the system, we assume 
a scaling relation EE - t ,  where 2 is a scaling exponent for 
the swollen fractal. At p c  the cluster extends throughout 
the entire sample. One can get an estimate for the expo- 
nent 2 by considering the time for a perturbation starting 
at  one side to arrive at the other side. For a crude ap- 
proximation we remember that excluded-volume interac- 
tions are screened on a length scale of the order of the 
distance between cross-links and larger but not as large 
as the biggest cluster itself. If we now model the bonds 
by long screened chains, i.e., the same as in an ordinary 
three-dimensional melt of linear chains, and if we assume 
that the perturbation propagates by a random walk on the 
connected cluster of screened chains, we estimate 2 = Df 
+ 2. According to the dynamic scaling hypothesis we find 

G ( w )  - ,Df/(Ofi2) (3.6) 
which givesz7 with the swollen fractal dimension, eq 3.5, 
G(w) - all2. We will see below how one can justify this 
very crude scaling argument for the frequency dependence 
of the modulus by a more advanced model, as also sug- 
gested in ref 10. The result (eq 3.6) has been obtainedloJ1 
by a generalized Rouse theory for these fractals. We 
summarize the basic equations for later use. 

The aim is to calculate the dynamic viscosity and mo- 
dulus of the gel during various stages of the gelation 
process. The rheological properties can be derived from 
an equation of motion of the objectlo*" if all internal modes 
are known approximately. Because of its polymeric nature, 
the cluster is dominated by Brownian motion, and one can 
proceed in close analogy with linear chains. Because of 
excluded-volume forces the problem cannot be solved ex- 
actly, and one may use a crude way of modeling the effect 
of short-range interactions by using effective powers that 
do not contradict the Flory result.l0 

cluded-volume forces is genera 7 ly unsolved, even for linear 



2540 Hess et al. Macromolecules, Vol. 21, No. 8, 1988 

as we had earlier from our simple dynamic scaling argu- 
ments. 

4. Rheological Properties during Gelation 
Here we present a simple model for the rheological 

functions, suited to explain the experimentally observed 
features in a unified fashion, for the pregel regime, the gel 
point itself, and the postgel regime. The decisive as- 
sumption is that the largest wavelength of the relaxation 
spectrum is determined by the correlation length of the 
system. Far beyond the gel point; the length that matters 
is the distance between the cross-links. This is the rubbery 
regime. As one approaches the gel point from either side, 
the correlation length diverges. 

Pregel State p < p C. For the time-dependent relaxa- 
tion modulus we write 

Let us first take the ideal Brownian fractal. In analogy 
to the linear chain, one introduces variables R(s), where 
s is defined'O on the entire fractal with its connectivity d,. 
Befause of the Brownian nature, one expects an equation 
of motion of the same type as the Rouse equation for linear 
chains.28 The result for the dynamic viscosity is thenlo 

1 
v*(w) - c 7 (3.7) 

4'40 1w + q2 

and the modulus is 
G*(w) = i q * ( w )  (3.8) 

qo is a lower cutoff due to the largest size L in the system, 
and it has been shownl0 that qo - L 4 w l 2 .  In contrast to 
linear chains, for the polymeric fractal one extends the 
meaning of s to some variable space of d, dimensions to 
take the higher dimensional connectivity into account. 
Then the values of q are no longer one-dimensional 
quantities, they are defined as d,-dimensional vectors. 
Replacing the sum by an integral (by introducing the 
density of states according to Alexander and Orbach21) we 
get 

. .. - L,,, ddy ... = io dq qdo-l ... (3.9) 
4'40 

There will later be an upper cutoff as well. This upper 
cutoff is defined by the minimum length where the fractal 
is no longer self-similar, i.e., a t  a length scale of the order 
of the bond length, which here means a few times the 
distance between cross-links. Below this length 1 one has 
still self-similarity-that of a Gaussian chain-accidentally 
with the same fractal dimension but of different spectral 
dimension. One can expect interesting crossover behavior, 
and this will reported elsewhere. The dynamic viscosity 
of the ideal fractal is then 

(3.10) 

The appearance of q2 in the viscosity is due to nearest- 
neighbor interactions, suggesting that there is no further 
interaction than that of the connected chains. 

In the presence of excluded-volume forces the q2 de- 
pendence may be altered in a similar way as for linear 
chhins.1° There is no exact solution,28 but one can model 
the dynamics by a quasi-particle approximation, i.e. 

(3.11) 

Here a = 2 corresponds to the ideal limit, and a is con- 
nected with the fractal dimensions via Df = 2d,/(a - d,) 
(compare with (3.2)). With the crude Flory argument (3.4) 

giving 

(3.12) 

(3.13) 

which predicts a = 8 / 3  in three dimensions, accidentally 
the value of 2 times d,. Thus one immediately recovers 
for the viscosity the scaling form by taking all modes into 
account: 

q*(w) N w-2/(0~+2) = w-1/2 (3.14) 

and for the modulus 
G*(w)  - Jh'(DrC2) = w1/2 (3.15) 

(4.1) 

where v ( q )  is the relaxation frequency of the qth mode, q1 
characterizes the largest mode, q1 = 21r/l~w/~, and 1 is the 
smallest distance on which the cluster is still self-similar. 
The smallest mode q1 is related to the characteristic size 
of the cluster, q1 = 2x/LdwI2, say. According to what was 
said before, L can be the typical size of the self-similar 
regions, L - t .  Let us assume further that g(q) and v ( q )  
are simple scaling functions, i.e. 

4 7 )  = v l (q /q l )a  (4.2) 

Here vl is the frequency probing roughly a few times the 
distance between cross-links in the sample. Essentially 
this is (in terms of frequencies) a higher cutoff in our 
theory, because at some lower frequencies one probes the 
dynamics of a cross-linked chain. Also, GI = G(t=O) is the 
high-frequency modulus, 2 is a normalization factor, and 
from eq 4.1 to 4.3 one finds 

The scaling form makes sense only as long as L >> 1 holds, 
and therefore Z = l/d,. 

Equation 4.1 then becomes 

(4.5) 

Despite L >> 1, it is not generally allowable to set the lower 
integration limit to zero, since the spectrum would then 
become singular at small frequencies, and it  is this sin- 
gularity that we must to treat in detail. 

A well-known example for a spectrum like that of (4.5) 
is given by the Rouse model for monodisperse linear 
polymers, where one has a = 2 and d, = 1. I t  has been 
noticed12 that the observed dynamic moduli could be de- 
scribed by the Rouse model, where the relaxation modulus 

G(t) - t-'i2 (4.6) 
for vl-l << t << v c l  is in agreement with the experimental 
findings. But obviously the structure of a cross-linking 
system cannot be identified with a monodisperse system 
of linear chains corresponding to the Rouse model, and of 
course the parameter combination d, = 1 and a = 2 is not 
the only choice that may lead to the observed power law 
in G(t). Indeed, any combination with 

CY = 2d, (4.7) 
leads to a t - I I z  scaling law for the relaxation modulus. 
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In the last section, we saw that for a model of a perco- 
lation cluster dissolved in a bath of smaller clusters and 
unreacted chains, where the spectral dimension is d,  = 4/3, 
the exponent a becomes by swelling in accord with 
condition 4.7. We proceed now to work with the complex 
viscosity, i.e., the Fourier transform of G(t) ,  instead of the 
modulus directly, simply because experiments are per- 
formed (by a rheometer) as functions of the frequency. 
From eq 4.5 one finds for the dynamic viscosity 
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The macroscopic steady-flow shear viscosity is obtained 
as 

(4.9) 

Close to the gel point, when L becomes very large (-51, 
we have v0 - $a--dbdw/2. Since 5 - lp - pel-", our approach 
predicts a divergence for the static viscosity a t  the gel 
point: 

o0 - ~p - p 1 - 4 ( P d d / 2  (4.10) 

If we take u from percolation theory (it is not clear if one 
can do that, but let us suppose this might be the u that 
appears), we get v0 - Ip - +!-kt with k = 1.7. This has to 
be compared to the experimental values reviewed in 
Stauffer et ala9 For frequencies u1 << w << q, the dynamic 
viscosity is 

?r 
[sin (7rdS/2a) + 

'*(O) = a sin (ad , /2a)  

Thus we find in the power law regime 

The prefactors are given by 

S = ds/cyI' ( d , / a )  G1uidJa (4.14) 

The coefficient is independent of the extent of reaction, 
which influences only the low-frequency behavior. 

The coefficient S is chosen so that, following Winter, it 
characterizes the strength of the corresponding power law 
of the relaxation modulus:'2-'6 

G ( t )  = Stdo/" (4.15) 

in the appropriate frequency range. 
A characteristic relaxation time A@) can been defined. 

It is the inverse of the frequency where the intersect of the 
power law (4.12) meets the low-frequency asymptote vo, 
i.e. 

vlo = aSX(p)'-'d./"' (4.16) 

which yields for p < p c  

A@) = (qO/aS)a/("-dJ (4.16a) 

Figure 6 shows a plot of q* normalized by v0, as a function 
of the reduced frequency wX(p). The parameters are d ,  
= 4/3 and cy = The ratio L/I was chosen to be 100. 
Higher values of L/ l  change the curves only in the high- 
frequency regime near ul. The corresponding Rouse limit 
d, = 1 and a = 2 agrees completely in the entire frequency 

iog[hip)wl 0 2 

Figure 6. Frequency dependence of the dynamic viscosity as 
given by eq 4.8 for p < p c  and eq 4.20 for p > p c  in rescaled units. 
The ratio L f I was chosen to be 100; the spectral dimension d, is 

range. Thus on the basis of the master curve in the rep- 
resentation of the reduced values of the viscosity and 
frequency, one cannot distinguish between the different 
cases of linear Rouse chains and a polymeric fractal. Recall 
the crudeness of the dynamics argument in section 3 when 
just fractal dimensions were fit to the Flory theory. 

On the other hand, cluster size, zero shear viscosity, and 
characteristic frequencies depend on the actual structure 
of the system. 

At the Gel Point p = p c .  If now the cross-linking 
reaction proceeds, the typical cluster size becomes larger 
and larger. As a consequence, the lowest frequency in the 
system tends to zero as the cluster size diverges. The 
number of relaxation modes therefore increases continu- 
ously. Finally at the gel point the correlation length 5 
becomes infinite (this means that 5 extents to the sample 
size), and the smallest frequency u1 is essentially zero: the 
mode characterized by the wavelength [ freezes in. 
Physically this makes sense, since this mode describes the 
rotational diffusion of the cluster as a whole. At  the gel 
point the percolation cluster reaches from one wall of the 
sample to the other, and such rotation becomes impossible. 

Equation 4.10 shows that at the gel point the viscosity 
diverges as 

4 ~ 3 .  

710 = Ldw(a-d,)/2 - Ip - p c J - ~ d d a - 4 ) / 2  (4.17) 

and the characteristic frequency as 

X(p)  - p w / 2  (4.18) 

In the three-dimensional case we now find at the gel point, 
where the power law is extended to the entire frequency 
range 

Iv*(w)l = ( ~ / 2 ) G p r ~ / ~ ~ - ' / ~  (4.19) 

Postgel Regime p > p c .  At the gel point only the 
longest wavelength freezes in, and rotational degrees of 
freedom cease. Torsional motions are still possible within 
the cluster. They take place on all length and time scales. 
As the cross-link reaction proceeds, more and more strands 
of the cluster link up and connect to the boundary of the 
sample, and more parts of the cluster become immobile. 
Of course, the chains between cross-links are still in 
Brownian motion, but we are interested in the modes on 
the fractal and not the internal modes of the bonds. Thus 
the longest wavelength (the largest self-similar part of the 
cluster) will decrease, and the corresponding modes will 
successively freeze in. The spectrum thus splits into two 
parts: frozen-in modes and modes still available for 
Brownian motion and relaxation of the cluster. 
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This separation is given by a wavenumber q1 = 27r JL&12, 
where L is again assumed to be of the order of the eoire- 
lation length. Then we write for the dynamic modulus 
G ( t )  = G ,  + G ( t )  = 
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as discussed previou~ly .~~ The extension of the statics to 
dynamics predicts what is found in the experiments of 
Winter et al.12-16 A very crude but simple dynamic scaling 
argument leads to the same frequency dependence pre- 
dicted by Cates'O and Muthukumar" by a generalized 
Rouse theory. 

Using the internal modes of the whole fractal, one is able 
to predict the shape of the curves of the rheological 
quantities. They agree with experiment quite well, al- 
though the theory is very approximate. Modeling of 
swelling in the dynamics by a crude fitting of fractal di- 
mensions seems to be adequate to describe the large-scale 
behavior. 

The exponents calculated within the limits of this me- 
thod are mean-field exponents, of course, but they may 
be treated as first approximations in this complicated 
excluded volume problem of the gelation cluster. That the 
magnitude of the exponent of the viscosity and modulus 
are the same is an artifact in three dimensions; generally 
this is not the case. The theory may also be applied to 
predict exponents in surface gelation or two-dimensional 
gelation. 
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