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Polymeric materials near the liquid-solid transition (LST) exhibit a very distinct relaxation pattern.
The reference point for analyzing these patterns is the instant of LST at which relaxation becomes
self-similar over wide ranges of the relaxation time. The universality of this transition and its
consequences have been explored extensively during the past decade. This study will present an
overview of rheological implications inherent in liquid-solid transitions of polymers. The LST can be
most reliably detected in a dynamic mechanical experiment in which the frequency independence of
the loss tangent marks the LST. A wide variety of rheological observations of materials in the
vicinity of an LST are discussed with respect to their universality. It is shown that polymer
chemistry, molecular weight, stoichiometry, temperature, inhomogeneities, etc. greatly influence the
material behavior near the LST. However, the characteristic self-similar relaxation is shown by all
investigated materials, independent of the nature of the LST (e.g., both, physically and chemically
crosslinking polymers). Several theories predict chemical and rheological properties in the vicinity of
an LST. They are briefly discussed and compared with experimental results. A variety of applica-
tions for polymers near LST are presented that either already exist or can be envisioned. The
self-similar relaxation behavior which results in a power law relaxation spectrum and modulus is not
restricted to materials near LST. Different classes of polymers are described that also show power
law relaxation behavior. What makes the self-similar relaxation specific for materials at LST is its
occurrence at long times with the longest relaxation time diverging to infinity.
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List of Abbreviations

BSW Baumgärtel, Schausberger, Winter (spectrum for linear flexible
chains of uniform length) [61]

CW Chambon-Winter (spectrum for critical gel)
FS Flory-Stockmayer
LCP liquid crystalline polymer
LST liquid/solid transition
ODT order/disorder transition
PBD polybutadiene
PDMS polydimethylsiloxane
UV ultraviolet

List of Symbols

A constant
a
T

horizontal shift factor
a
~

critical exponent for longest relaxation time before LST
a
`

critical exponent for longest relaxation time after LST
b
T

vertical shift factor
b scaling exponent for gel fraction
C(t; t@) Cauchy strain tensor
C~1(t; t@) Finger strain tensor
c concentration
d space dimension
d
&

fractal dimension
dM
&

fractal dimension with excluded volume screening
d phase angle
d
#

phase angle at LST
E/R activation energy divided by universal gas constant
F
ij

fragmentation kernel, probability of cluster of size i#j to break
up into cluster of size i and cluster of size j

f functionality, frequency
fM
2

average number of crosslinking sites along a chain
f
'

gel fraction
G relaxation modulus
G

0
plateau modulus of fully crosslinked material

G
%

equilibrium modulus
G* complex modulus
G@ storage modulus
G@@ loss modulus
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G@
#

storage modulus at LST
G@@

#
loss modulus at LST

gN
2

average number of crosslinking sites along a chain
g measured property in definition of mutation number
C Gamma function
c shear strain, critical exponent for molecular weight
c
0

step shear strain, shear strain amplitude
cR shear rate
cR
0

constant shear rate
H relaxation spectrum
H

0
front factor of power law spectrum

h Heaviside step function
g@ real part of complex viscosity, g@"G@@/u
g@@ imaginary part of complex viscosity, g@@"G@/u
g
0

zero-shear viscosity
J creep compliance
J0
%

equilibrium compliance
J@ storage compliance
J@@ loss compliance
K

ij
reaction kernel, probability of cluster of size i to react with cluster
of size j

i scaling exponent of rates of change of dynamic moduli
K exponent for certain reaction kernel K

ij
, K"k#l

j relaxation time
j
0

lower bound of CW relaxation spectrum, characteristic relaxation
time of liquid state, characteristic material time

j
"

lifetime of physical bond
j
#)!3

characteristic relaxation time
j
-

lower cutoff relaxation time of power law spectrum
j
.!9

longest relaxation time
j
1'

lifetime of physical cluster
j
6

upper cutoff relaxation time of power law spectrum
M cluster mass
M

%
entanglement molecular weight

M
GAUSS

molecular weight above which chains behave Gaussian
M

.!9
molecular weight of largest cluster

M
/

number average molecular weight
M

8
weight average molecular weight

m power law exponent (for spectrum with positive exponent)
k exponent for homogeneous reaction kernel K

ij
N number of bonds in a molecular cluster
N(M) cluster mass distribution
N

1
first normal stress difference

N
'

gel number
N

.!9
maximum number of bonds in a molecular cluster
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N
.6

mutation number
n relaxation exponent
n
Af

number of molecules of A of functionality f
n
Bg

number of molecules of B of functionality g
n
f

number of molecules of functionality f
l critical exponent for typical cluster size
p measure of connectivity, e.g. extent of reaction in case of chemical

gelation
p
#

critical extent of reaction
p
A

extent of reaction of species A
p
B

extent of reaction of species B
n osmotic pressure
R radius of gyration
R

#)!3
typical cluster size

r molar ratio
r
1

lower molar ratio
r
6

upper molar ratio
o cluster density, mass density
S gel stiffness
s critical exponent for zero-shear viscosity
p critical exponent for maximum molecular weight
¹ temperature
*¹ degree of supercooling
¹

0
reference temperature

¹
#

temperature at critical point
¹

'
glass transition temperature

¹
.

melt temperature
t time
*t sampling time
t@ time (integration variable)
t@@ time between t@ and t
t
1

creep time
t
1

process time
q critical exponent for cluster mass distribution, stress
q stress tensor
qR rate of change of shear stress
q
0

constant applied shear stress in creep experiment
q
1

stress under static load at infinite time
q
11

—q
22

first normal stress difference
q
21
"q

12
shear stress

t exponent for homogeneous reaction kernel K
ij

u angular frequency
m correlation length
t
1

coefficient of first normal stress difference
z critical exponent for equilibrium modulus
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1 Patterns of Relaxation Near the Liquid-Solid Transition

Polymeric materials relax with a broad spectrum of relaxation modes. Magni-
tude and shape of the spectrum reflect the material structure in some complic-
ated way. The longer modes belong to the motion of entire molecules or of large
chain segments while the shorter modes characterize small scale details of the
molecules. Extra long relaxation modes arise from large scale structures which
some polymers are able to form due to phase separation or associations on the
molecular or particulate level. The formation of such extensive clusters is the
origin of many liquid-solid transitions. Most intriguing is the behavior near such
transitions, when molecular motions slow down while they correlate with
motions of other molecules over longer and longer distances. The relaxation
modes are not independent any more, but they are somehow coupled over
a wide range of time scales. This leads to a universal pattern of the relaxation
time spectrum at liquid-solid transitions. The universality of the rheological
behavior and its consequences have been explored extensively during the past
decade, and this study will attempt to give an overview of the current state of the
field.

There are many reasons for studying the liquid-solid transition (LST). The
physicist might be interested in gelation as a critical phenomenon. The LST of
polymers is also technically important since it occurs in nearly all of the
common fabrication processes. Examples are injection molding of semi-crystal-
line polymers (where the surface quality of the finished parts may be affected by
gelation) and processing of crosslinking polymers. The instant of LST has to be
known for the design and operation of such polymer processing. The polymer
processing engineer may like to anticipate the instant of gelation, often for the
mere reason of avoiding or postponing it. Beyond that, processing near the gel
point promises interesting texture development for ultimate material properties.
The materials scientist might like to know the possible range of material
properties close to the gel point. Conservation of the material state near an LST
has the potential for novel properties which combine liquid and solid character-
istics. Industrial applications are just beginning to explore such advantageous
properties in adhesives, super absorbers, dampers, sealants, membranes, toner
matrices, catalyst supports, etc. Gels are good adhesives since they combine the
surface wetting property of liquids with the cohesive strength of solids. Strong
adhesion and damping properties recommend gels as binder material in com-
posite materials. Widespread technical applications have not yet materialized,
since, until recently, it has been difficult to measure and control the LST. This
has changed, and, as a consequence, one is able now to control processing near
LST or to manufacture gels with reproducible properties.

The chemical gel point defines the instant of LST of chemically crosslinking
polymers. Before the crosslinking polymer has reached its gel point it consists of
a distribution of finite clusters. It is called a ‘sol’ since it is soluble in good
solvents. Beyond the gel point, it is called a ‘gel’. The gel is an infinitely large
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Fig. 1. Schematic of cluster growth during crosslinking. At p"0, only the monomer is present.
With increasing crosslinking index, p, the connectivity increases and the molecular clusters (radius
R) grow in size. In the solid state, the network spans the entire sample, 2RPH

macromolecule which only can swell but not dissolve in a solvent, even if low
molecular weight molecules (sol fraction) are still extractable from the gel. We
will later borrow this terminology (‘gel point’, ‘sol’, ‘gel’) from chemical gelation
and apply it to a wide range of materials which share rheological properties with
chemically crosslinking systems. These are the physical gels, which are able to
form extensive molecular or particulate clusters by a variety of different mecha-
nisms. Examples are partially crystalline polymers, liquid crystalline polymers at
their nematic-to-smectic transition, micro-phase separating block copolymers,
and suspensions and emulsions at the percolation limit. Emphasis in this study
will be on the rheological behavior, without trying to discuss the various
‘crosslinking’ mechanisms.

The independent variable, p, of the solidification process differs from mater-
ial to material. It is a measure of connectivity (see Fig. 1), which requires
restatement for each type of LST. An exception is chemical gelation for
which the extent of crosslinking reaction, p, is defined and directly measurable
as the ratio of the number of chemical bonds to the total number of possible
bonds (0(p(1, without ever reaching unity), i.e. p is the bond probability.
At the critical extent of reaction, pPp

#
, the molecular weight of the largest

molecule diverges to infinity and the molecular weight distribution spreads
infinitely broad (M

8
/M

/
PR), i.e. molecular sizes range from the smallest

unreacted oligomer to the infinite cluster. This defines the gel point [1, 2].
The value of p

#
is not universal but depends on the details of the evolving

structure.
The polymer at the gel point is in a critical state [3], and the name critical gel

[4] is appropriate for distinguishing polymers at the gel point from the various
materials which commonly are called gels. The critical gel has no intrinsic size
scale except for the size of its oligomeric building block, and molecular motions
are correlated over large distances. The combination of liquid and solid
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behavior at the gel point requires unusual simplicity and regularity in the
relaxation pattern.

Very important are materials in the vicinity of the gel point. For such nearly
critical gels, p!p

#
is a measure of the distance from the gel point, and all

properties can be expanded in powers of Dp!p
#
D. This is permitted within the

critical region at small distance at both sides of the gel point [3]. Material
properties of nearly critical gels are still governed by the simplicity of the critical
state. This changes at increased Dp!p

#
D , where the behavior loses its simplicity.

It will be interesting to study the rheological properties which gradually break
free from that pattern as the distance from the gel point increases.

Material properties at a critical point were believed to be independent
of the structural details of the materials. Such universality has yet to be
confirmed for gelation. In fact, experiments show that the dynamic mechanical
properties of a polymer are intimately related to its structural characteristics
and forming conditions. A direct relation between structure and relaxation
behavior of critical gels is still unknown since their structure has yet evaded
detailed investigation. Most structural information relies on extrapolation onto
the LST.

1.1 Rheological Observations of a Liquid-Solid Transition

The transition strongly affects the molecular mobility, which leads to large
changes in rheology. For a direct observation of the relaxation pattern, one may,
for instance, impose a small step shear strain c

0
on samples near LST while

measuring the shear stress response q
12

(t) as a function of time. The result is the
shear stress relaxation function G (t)"q

12
(t)/c

0
, also called relaxation modulus.

Since the concept of a relaxation modulus applies to liquids as well as to solids,
it is well suited for describing the LST.

Figure 2 shows a typical evolution of G(t, p) near the LST of a crosslinking
polymer. The x axis shows the time of crosslinking reaction which corresponds
to an extent of reaction, p. For each of the curves in Fig. 2, p is kept constant.
The crosslinking reaction was stopped at discrete values of p, which increased
from sample to sample.

In samples with early stages of crosslinking (lower curves in Fig. 2), stress can
relax quickly. As more and more chemical bonds are added, the relaxation
process lasts longer and longer, i.e. G(t) stretches out further and further. The
downward curvature becomes less and less pronounced until a straight line
(‘power law’) is reached at the critical point.

Exactly at the LST, the material behaves not as a liquid any more and not
yet as a solid. The relaxation modes are not independent of each other but are
coupled. The coupling is expressed by a power law distribution of relaxation
modes [5—7]

G(t)"St~n for j
0
(t(R (1-1)
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Fig. 2. Relaxation modulus G(t) of a set of polydimethylsiloxane samples with increasing extent of
crosslinking plotted against time of crosslinking. The linear PDMS chains (M

/
+10 000, polydis-

persity index+2) were endlinked with a four-functional silane crosslinker catalyzed by a platinum
compound. Samples with different extent of reaction were prepared by poisoning the reaction at
different times. The actual extent of reaction was not determined. Two of the samples are clearly
before the gel point (LST) and two beyond. The third sample is very close to the gel point. Data of
Chambon and Winter [5] evaluated by Baumgärtel and Winter [8]

S being the gel stiffness as indicated by the straight line in the log/log plot, Fig. 2.
This marks the intermediate state between curving down and curving to the
right, and we assume that the power law behavior extends to infinite times. The
power law may be explained by the hypothesis that one probes self-similar
regions of the critical gel by varying the times of observations [4]. The upper
cut-off is infinite since the longest relaxation time diverges to infinity at the LST.
Parameters S, n, and the lower cross-over, j

0
, depend on the material structure

at the transition.
Beyond the LST, p'p

#
, the material is a solid. The solid state manifests

itself in a finite value of the relaxation modulus at long times, the so-called
equilibrium modulus

G
%
"lim

t?=
G(t) . (1-2)

Stresses cannot relax completely any more. The upper curves in Fig. 2 show this
curving to the right, where at long times an equilibrium stress level will
eventually be reached. More data at longer times would be required in order to
clearly identify the value of G

%
. However, G

%
can be estimated from the curves,
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and it can be seen that G
%
is zero at the gel point and grows with the extent of

reaction, p.
Rubbery materials beyond the gel point have been studied extensively.

A long time ago, Thirion and Chasset [9] recognized that the relaxation pattern
of a stress q under static conditions can be approximated by the superposition of
a power law region and a constant limiting stress q

1
at infinite time:

q"q
1A1#A

t

j
0
B
~n

B (1-3)

where j
0

is a material-dependent time constant. They found very low values for
the slope n in the power law region, 0.12(n(0.17.

1.2 Relaxation Time Spectrum

The linear viscoelastic behavior of liquid and solid materials in general is often
defined by the relaxation time spectrum H(j) [10], which will be abbreviated as
‘spectrum’ in the following. The transient part of the relaxation modulus as used
above is the Laplace transform of the relaxation time spectrum H(j)

G(t)"G
%
#P

j.!9

0

H (j) e~t@j
dj
j

. (1-4)

The spectrum is a non-negative function [11] which exists in the range of
relaxation times 0(j)j

.!9
. An important material property is the longest

relaxation time, j
.!9

, beyond which the spectrum is equal to zero; H(j)"0 for
j'j

.!9
. The spectrum cannot be measured directly. However, many methods

have been proposed to somehow extract H(j) from linear viscoelastic material
functions as measured in the appropriate experiments. A comprehensive review
of some of those methods was recently presented by Orbey and Dealy [12].

We assume that the spectrum H (j) gradually evolves as the material under-
goes transition. There exists a spectrum for the material directly at the transition
point, the critical gel. Its characteristic features are twofold: a longest relaxation
time (upper limit of the integral) that diverges, j

.!9
PR, and a power law

distribution with a negative exponent, !n. Both properties are expressed in the
self-similar CW spectrum which Chambon and Winter [6, 7] found when
analyzing chemical gelation experiments (Fig. 3):

H(j)"
S

!(n)
j~n for j

0
(j(R (1-5)

where !(n) is the gamma function. Stress relaxation is the same at all scales of
observation for such ‘self-similar’ or ‘scale invariant’ behavior. It is interesting to
note that the critical gel does not have a characteristic time constant, which is
a rather unusual property for a viscoelastic material.

The relaxation exponent n is restricted to values between 0 and 1. The case of
n"0 corresponds to the limiting behavior of a Hookean solid (the relaxation
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Fig. 3. Schematic of Chambon-Winter gel spectrum. The longest relaxation time diverges to
infinity. The relaxation time j

0
marks the crossover to the short-time behavior, which depends on

the material. The depicted case corresponds to a low-molecular-weight precursor (crossover to glass
transition region)

modulus is a constant). The restriction of n to values less than unity is necessary
to assure a diverging zero-shear viscosity at the gel point.

The self-similar spectrum is not valid at short times, j(j
0
, where the details

of chemical structure become important (glass transition, entanglements, etc.).
The cross-over to the glass transition at short times is typical for all polymeric
materials, for both liquids and solids. The critical gel is no exception in that
respect. j

0
could be used as a characteristic time in the CW spectrum since it

somehow characterizes the molecular building block of the critical gel; however,
it has no direct relation to the LST. At times shorter than j

0
, the LST has no

immediate effect on the rheology. Indirect effects might be seen as a shift in the
glass transition, for instance, but these will not be studied here.

1.3 Divergence of Longest Relaxation Time

In the close vicinity of the gel point, Dp
#
!p D;1, the longest relaxation time

diverges in a power law on both sides of the gel point (Fig. 4)

j
.!9

JG
(p

#
!p)!a

~ for sol, p(p
#

(p!p
#
)!a

` for gel, p'p
#
.

(1-6)
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Fig. 4. Schematic of the divergence of the longest relaxation time as the liquid-solid transition is
approached from either side

a
~

and a
`

are the critical exponents for the sol and the gel. In the sol,
j
.!9

belongs to the largest cluster. The largest cluster reaches infinite size at the
gel point, but it still can relax, and the corresponding j

.!9
has become infinitely

large. Beyond the gel point, the relaxable components (for chemical gelation this
would be the sol fraction, unattached chain ends, long loops, etc.) gradually
incorporate into the permanent network, and j

.!9
decays again.

With increasing distance from the gel point, the simplicity of the critical state
will be lost gradually. However, there is a region near the gel point in which the
spectrum still is very closely related to the spectrum at the gel point itself,
H(j, p

#
). The most important difference is the finite longest relaxation time

which cuts off the spectrum. Specific cut-off functions have been proposed
by Martin et al. [13] for the spectrum and by Martin et al. [13], Friedrich
et al. [14], and Adolf and Martin [15] for the relaxation function G(t, p

#
).

Sufficiently close to the gel point, Dp!p
#
D;1, the specific cut-off function

of the spectrum is of minor importance. The problem becomes interesting
further away from the gel point. More experimental data are needed for testing
these relations.

It was a most interesting discovery that not only the longest relaxation time
diverges at LST, but that all the shorter relaxation modes show a very distinct
pattern. The longest mode escapes the measurement near LST while the spec-
trum of the shorter modes is still accessible. The intent of this study is to explore
the occurrence of this relaxation time spectrum in a broad range of solidifying
materials and in a time or frequency window which is as wide as possible. The
properties of the self-similar CW spectrum, Eq. 1—5, will be mapped out in
Sect. 3. The behavior at LST then will serve as a reference state for the analysis
of rheological phenomena in the vicinity of LST. This will set the stage for
reviewing experimental data from several laboratories. Observations on chem-
ical gelation will guide the analysis of various types of LST. The possibility will
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Fig. 5. Schematic of the divergence
of zero-shear viscosity, g

0
, and

equilibrium modulus, G
%
. The LST

is marked by p
#

be suggested that there exists a universal framework for many LSTs of different
origin. In that spirit, the terms ‘liquid-solid transition’ (LST) and ‘gel point’ will
be used synonymously.

1.4 Interrelation Between Critical Exponents

Steady shear flow properties are sensitive indicators of the approaching gel
point for the liquid near LST, p(p

#
. The zero shear viscosity g

0
and equilib-

rium modulus G
%
grow with power laws [16]

g
0
J(p

#
!p)~s for sol, p(p

#
(1-7)

G
%
J(p!p

#
)z for gel, p'p

#
(1-8)

having critical exponents, s and z. The viscosity of the sol increases due to the
diverging cluster size. The equilibrium modulus of the gel gradually builds up
since an increasing fraction of the molecules join, and thereby strengthen the
sample spanning permanent network (Fig. 5).

As a result, we find for sols that the divergence of the above zero shear
viscosity g

0
and of two other linear viscoelastic material functions, first normal

stress coefficient t
1

and equilibrium compliance J0
%
, depends on the divergence

of j
.!9

[17]

j
.!9

(p)Jg1@(1~n)
0

Jt1@(2~n)
1

JJ01@n

%
for sol, p(p

#
. (1-9)

Only the value of the relaxation exponent is needed. The critical exponent a
~

of
the longest relaxation time (compare Eqs. 1-6 and 1-7) is therefore on an equal
footing with the critical exponent of the viscosity:

s"(1!n)a. (1-10)
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Fig. 6. Evaluation of the longest relaxation time for a sample beyond the gel point, p'p
#
: intersect

of horizontal line for G
%

with the power law of the critical gel, St~n

For the relaxation of the solid near the gel point, the critical gel may serve as
a reference state. The long time asymptote of G (t) of the nearly critical gel, the
equilibrium modulus G

%
, intersects the G(t)"St~n of the critical gel at a charac-

teristic time (Fig. 6) which we will define as the longest relaxation time of the
nearly critical gel [18]

G
%
"(St~n)

t/j.!9
Pj

.!9
"A

G
%
(p)

S B
~1@n

for gel, p'p
#
. (1-11)

It obeys the typical characteristics, namely the divergence to infinity as G
%
goes

to zero (gel point) and the approach of a zero value as G
%
becomes large. Again,

only the relaxation exponent n is needed for relating the divergence of j
.!9

with
that of G

%
; compare Eqs. 1-8 and 1-11:

z"na
`

for gel, p'p
#
. (1-12)

The exponents a
~

and a
`

depend not only on the relaxation exponent n, but
also on the dynamic exponents s and z for the steady shear viscosity of the sol
and the equilibrium modulus of the gel.

The analysis may be simplified by postulating symmetry of the diverging
j
.!9

on both sides of the gel point [18]. A power law exponent (see Eq. 1-6)
which is the same on both sides,

a"a
~
"a

`
(1-13)
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leads to the interesting relations between critical exponents [13, 18, 19]

n"z/(z#s). (1-14)

a"s#z, (1-15)

s"(1!n)a ; z"na. (1-16)

Only two of the exponents (a and n, for instance) are sufficient to describe the
rheology of nearly critical gels. The front factor is more difficult to estimate, but
it most likely differs on both sides.

These relations will be useful for testing theories, since, except for the
symmetry hypothesis, no specific assumptions were introduced in the derivation.
Theory might give an answer about the validity of the above symmetry hypothe-
sis. In fact, the theory of Goldbart and Goldenfeld [20] that is based on
statistical mechanics yields Eq. 1-14. However, there does not seem to be an easy
way of proving or disproving this hypothesis at this time. The wide range of
values for the relaxation exponent, 0(n(1, lets us expect that the dynamic
exponents s and z are non-universal as well.

2 Theory of Gelation

This study is mostly concerned with experimental aspects, especially since
a quantitative prediction of the self-similar spectrum (value of critical exponent
and prefactor) from first principles seems to be still lacking, although several
theories predict the evolution of cluster growth during gelation. Excellent
reviews of theory have been given by Stauffer et al. [3, 16] and Vilgis [21]. We
refer to these for a deeper study and only highlight several of the theoretical
predictions in the following.

2.1 Branching Theories

Branching models are based on multifunctional molecules of different types
between which covalent bonds are formed to yield a network structure. One of
the multifunctional molecules is required to carry at least three functional
groups, while the other one can have two functional groups. The overall extent
of reaction, p, equals the a priori probability that any given functional group has
condensed. The earliest of these branching theories was developed by Flory
[1, 22] and Stockmayer [2]. Using combinatorial approaches, they derived an
expression for the molecular weight distribution, and subsequently the critical
extent of reaction, p

#
, at which the molecular weight diverges, M

8
PR (gel

point). Their approach includes several simplifying assumptions which are
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usually not valid in real systems, i.e. (1) the reactivities of all functional groups of
the same type are equal and independent of each other, (2) no intramolecular
reactions between functional groups on the same cluster (‘loop formation’) are
allowed, (3) the crosslinks are randomly formed between any pair of functional
groups that can form a bond, and (4) point-like monomers are assumed (no
steric hindrance and excluded volume effects). More advanced branching
models were developed later. The two most widely used of these are the so-called
recursive theory [23, 24] and the cascade theory [25—28]. These later models can
deal approximately with nonidealities such as cyclization and long-range substi-
tution effects. All branching theories are mean field theories and yield the same
simple expression for the critical extent of reaction (for the same chemical
model) depending on the geometry of the network. Special cases are:

Case 1. Homopolymerization of similar f-functional molecules:

p
#
"

1

fM
2
!1

(2-1)

The same relation is found for the end-linking of molecules of low functionality
( f"3 or 4) and for the vulcanization of long molecular chains. The second-
moment average number of cross-linking sites along the chain, fM

2
, is defined as

fM
2
"

+
f

f 2n
f

+
f

f n
f

(2-2)

with n
f
"number of molecules of functionality f.

Case 2. Cross-linking of f-functional molecules A
f

with g-functional molecu-
les B

g
, which are mixed at a molar ratio r"+

f
fn

Af
/+

g
gn

Bg

p
A,c

"

1

Jr ( fM
2
!1) (gN

2
!1)

(2-3)

with p
B
"rp

A
. The stoichiometric ratio of a sample must be chosen between

a lower and upper critical value

r
1
"

1

( fM
2
!1) (gN

2
!1)

; r
6
"

1

r
1

(2-4)

otherwise the reaction stops before reaching the gel point. The relations in
Eq. 2-4 follow from Eq. 2-3 when considering species A

f
or species B

g
fully

reacted, respectively.
Experimental results of p

#
, r

1
, and r

6
were found to agree reasonably well

with these predictions despite the inherent assumptions [29—31].
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Fig. 7. Comparison of a the structure of the Bethe lattice with a functionality of 3 (only part of the
system is shown) and b a two-dimensional square lattice [16]. For the Bethe lattice, each possible
bond is shown as a line connecting two monomers. In FS theory an actual bond of these possible
bonds is formed with probability p. For the square lattice, each bond that has been formed is shown
as a short line connecting two monomers, while the monomers are not shown

2.2 Percolation Theory

Percolation theory describes [32] the random growth of molecular clusters on
a d-dimensional lattice. It was suggested to possibly give a better description of
gelation than the classical statistical methods (which in fact are equivalent to
percolation on a Bethe lattice or Caley tree, Fig. 7a) since the mean-field
assumptions (unlimited mobility and accessibility of all groups) are avoided
[16, 33]. In contrast, immobility of all clusters is implied, which is unrealistic
because of the translational diffusion of small clusters. An important funda-
mental feature of percolation is the existence of a critical value p

#
of p (bond

formation probability in random bond percolation) beyond which the probabil-
ity of finding a percolating cluster, i.e. a cluster which spans the whole sample, is
non-zero.

In random bond percolation, which is most widely used to describe gelation,
monomers, occupy sites of a periodic lattice. The network formation is
simulated by the formation of bonds (with a certain probability, p) between
nearest neighbors of lattice sites, Fig. 7b. Since these bonds are randomly placed
between the lattice nodes, intramolecular reactions are allowed. Other types of
percolation are, for example, random site percolation (sites on a regular lattice
are randomly occupied with a probability p) or ‘random random’ percolation
(also known as continuum percolation: the sites do not form a periodic lattice
but are distributed randomly throughout the percolation space). While the
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random site percolation is not directly relevant to gelation [16], continuum
percolation is of particular value, since in real systems the cluster-forming
molecules are not distributed regularly in space.

In general, percolation is one of the principal tools to analyze disordered
media. It has been used extensively to study, for example, random electrical
networks, diffusion in disordered media, or phase transitions. Percolation
models usually require approximate solution methods such as Monte Carlo
simulations, series expansions, and phenomenological renormalization [16].
While some exact results are known (for the Bethe lattice, for instance), they are
very rare because of the complexity of the problem. Monte Carlo simulations
are very versatile but lack the accuracy of the other methods. The above solution
methods were employed in determining the critical exponents given in the
following section.

2.3 Scaling Near the LST

All theories yield unique scaling relationships for molecular (e.g. mean cluster
size, size distribution) and bulk properties (e.g. equilibrium modulus) near the
critical point, but critical exponent values and relations between different critical
exponents are different. This scaling is common for material behavior near any
critical point, i.e. the polymeric material near the gel point exhibits a behavior
analogous, for example, to a fluid near its vapor-liquid critical point. For the
critical gel, weight average molecular weight M

8
, typical cluster size R

#)!3
, and

gel fraction f
'

scale similarly with Dp!p
#
D as the inverse of the derivative of

osmotic pressure with respect to concentration (Ln/Lc) ~1, correlation length m,
and concentration fluctuations *c, respectively, scale with ¹!¹

#
in case of

a fluid at the vapor-liquid critical point [3, 34]. The following scaling relation-
ships for these static properties are commonly found in the literature [16, 35]:

M
8
JDp!p

#
D~c p(p

#
(2-5)

R
#)!3

JDp!p
#
D~l p(p

#
(2-6)

f
'
JDp!p

#
Db p'p

#
(2-7)

The cluster mass distribution at the gel point scales with the molecular weight of
those clusters

N(M)JM~q p"p
#

(2-8)

To describe the cluster mass distribution in the vicinity of the gel point, a cut-off
function f (M/M

.!9
) is introduced [36] (Fig. 8)

N(M)JM~q f A
M

M
.!9
B (2-9)
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Fig. 8. Power law molecular weight distribution in the vicinity of the LST. M
0

is the molecular
weight of the smallest precursor molecule, and M

.!9
the molecular weight of the largest cluster

present in the polymer

with

M
.!9

JDp!p
#
D~1@p (2-10)

Percolation theory predictions for these critical exponents are c"1.76,
l"0.89, b"0.39, q"2.2 and p"0.46. The Flory-Stockmayer theory also
predicts this scaling behavior near the gel point, with exponents c"1, l"0.5,
b"1, q"2.5, and p"0.5 [3, 37].

Colby et al. [35] proposed an interesting experimental approach to measure
the static exponents. They noticed that it is hard to accurately measure the
chemical extent of reaction, p, and thus eliminated this variable (more precisely
the distance from the gel point Dp!p

#
D) from the scaling relations. For example

combining Eqs. 2-5 and 2-6 yields the following relation between the weight
average molecular weight, M

8
, and the characteristic radius, R

#)!3
:

M
8
JRc@l

#)!3
(2-11)

Similar relations between different scaling exponents were also developed by
Stauffer [37] by combining two of the scaling relations at a time to eliminate
Dp!p

#
D.

Besides the static scaling relations, scaling of dynamic properties such as
viscosity g and equilibrium modulus G

%
[16, 34], see Eqs. 1-7 and 1-8, is also

predicted. The equilibrium modulus can be extrapolated from dynamic experi-
ments, but it actually is a static property [38].
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The scaling of the relaxation modulus G(t) with time (Eq. 1-1) at the LST was
first detected experimentally [5—7]. Subsequently, dynamic scaling based on
percolation theory used the relation between diffusion coefficient and longest
relaxation time of a single cluster to calculate a relaxation time spectrum for the
sum of all clusters [39]. This resulted in the same scaling relation for G(t) with an
exponent n following Eq. 1-14.

It is interesting to note here that the cluster mass distribution and the
relaxation modulus G (t) at the LST scale with cluster mass and with time,
respectively, while all other variables (dynamic and static) scale with the distance
from p

#
in the vicinity of the gel point.

The classical theory predicts values for the dynamic exponents of s"0 and
z"3. Since s"0, the viscosity diverges at most logarithmically at the gel point.
Using Eq. 1-14, a relaxation exponent of n"1 can be attributed to classical
theory [34]. Dynamic scaling based on percolation theory [34, 40] does not
yield unique results for the dynamic exponents as it does for the static expo-
nents. Several models can be found that result in different values for n, s and z.
These models use either Rouse and Zimm limits of hydrodynamic interactions
or Electrical Network analogies. The following values were reported [34, 39]:
(Rouse, no hydrodynamic interactions) n"0.66, s"1.35, and z"2.7, (Zimm,
hydrodynamic interactions accounted for) n"1, s"0, and z"2.7, and (Elec-
trical Network) n"0.71, s"0.75 and z"1.94.

De Gennes [41] predicted that percolation theory should hold for crosslink-
ing of small molecule precursors. However, he argued that for vulcanizing
polymers (high M

8
), only a very narrow regime near the gel point exists for

which percolation is valid, i.e. these polymers should exhibit more mean field-
like behavior.

2.4 Critical Gel as Fractal Structure

Based on the fractal behavior of the critical gel, which expresses itself in the
self-similar relaxation, several different relationships between the critical expo-
nent n and the fractal dimension d

&
have been proposed recently. The fractal

dimension d
&
of the polymer cluster is commonly defined by [16, 42]

RJM1@d& (2-12)

where R is the radius of gyration. Assuming hyperscaling d
&
can be related to the

critical exponents by (not valid for mean field theories) [16, 34]

d
&
"d!

b
v

(2-13)

This results in a value of d
&
"2.5 for bond percolation on a 3-dimensional

lattice. The fractal dimension of the Bethe lattice (Flory-Stockmayer theory) is
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d
&
"4 [16], which leads to a physical discrepancy, since any value higher than

3 (dimensionality of the sample) results in the cluster density increasing with
cluster size (oJRd&~d) . For d"6 the hyperscaling assumption and mean field
theories are compatible, i.e. Eq. 2-13 gives the correct fractal dimension for the
classical theory.

Muthukumar and Winter [42] investigated the behavior of monodisperse
polymeric fractals following Rouse chain dynamics, i.e. Gaussian chains (ex-
cluded volume fully screened) with fully screened hydrodynamic interactions.
They predicted that n and dM

&
(the fractal dimension of the polymer if the excluded

volume effect is fully screened) are related by

n"
dM
&

dM
&
#2

(2-14)

Hess et al. [43] extended this approach to monodisperse chains with excluded
volume effects (swollen clusters). They realized that, although the linkage pro-
cess can be described by percolation, bond percolation does not give a correct
picture of crosslinking between long chains because these chains are flexible,
whereas bond percolation theory is based on stiff bonds. Thus, even though the
connectivity of the critical gel may be prescribed by bond percolation theory, the
dynamic properties of the object are drastically affected by the replacement of
rigid bonds by flexible chains. Their investigation resulted in the same functional
dependence of n and d

&
(the fractal dimension when excluded volume effects are

taken into account):

n"
d
&

d
&
#2

(2-15)

where d
&
and dM

&
are related by

dM
&
"

2d
&

d#2!2d
&

(2-16)

Muthukumar [44] further investigated the effects of polydispersity, which are
important for crosslinking systems. He used a hyperscaling relation from per-
colation theory to obtain his results. If the excluded volume is not screened, n is
related to d

&
by

n"
d
&

d
&
#2

(2-17)

In the case of full screening of excluded volume he obtained

n"
d

dM
&
#2

"

d(d#2!2d
&
)

2(d#2!d
&
)

(2-18)

Especially in the latter case, a small change in the fractal dimension can lead to
a significant change in n, and he therefore concluded that n can take values
between 0 and 1 (for d

&
ranging from 2.5 to 1.25, see Fig. 9).
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Fig. 9. Relation between relaxation exponent n and fractal dimension d
&
for a three-dimensional

network. In case of complete screening of excluded volume, values of 0(n(1 are possible if d
&
is

chosen between 1.25 and 2.5

If only partial screening is present, the fractal dimension takes a value
somewhere between d

&
and dM

&
. According to this model, a crosslinker deficiency,

which leads to a more open structure and therefore a lower value of d
&
, increases

the value of n. Dilution of the precursor with a non-reactive species has the same
effect on the relaxation exponent.

2.5 The Notion of Topology

Goldbart and Goldenfeld [20] challenged the notion that gelation could be
described in terms of the purely geometrical description of percolation theory.
They developed a theory based on statistical mechanics arguments. The cross-
linking system cannot be uniquely specified by the positions of crosslinks only,
as is done in percolation theory. Topology needs to be considered as well. They
argue that the condition for the liquid-solid transition is a sufficiently complex
topology rather than a sufficient degree of connectivity, in contrast to percola-
tion, which does not take the contribution of trapped entanglements into
account. They define the solid state in terms of a non-vanishing shear modulus
(as tPR) and in terms of breaking of the translational invariance of the
Hamiltonian. This implies that rigidity of the solid state is due to the preference
of atoms to localize close to certain neighbors in order to minimize the free
energy of the system rather than due to long range forces, i.e. rigidity is
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a consequence of thermodynamics. Percolation models do not address the ques-
tion of how rigidity emerges. The new model is a microscopic theory of the
liquid-solid transition based on a physical model of flexible chains and solvent.
The transition to the solid state as the crosslink density increases beyond the
critical density is a continuous one, and hence is a second order transition. This is
rather unusual for liquid-solid transitions, which are usually first order. The
second order transition is accompanied by scale invariance, and therefore implies
scaling behavior of the shear modulus as detected by Chambon and Winter [5],
but it does so only at the critical point. Goldenfeld and Goldbart [20] developed
relations between scaling exponents z, s, and n for the equilibrium modulus G

%
, the

zero-shear viscosity g
0
, and the complex modulus G(t), respectively, and predict

Eq. 1-14, n"z/(s#z) , from some general arguments. The exponent of the
equilibrium modulus is predicted to equal the scaling exponent for the correla-
tion length m. However, the theory does not predict any values for these scaling
exponents, which makes comparison with experimental data difficult.

2.6 Kinetic Theory (Smoluchowski Equation)

All models described up to here belong to the class of equilibrium theories. They
have the advantage of providing structural information on the material during
the liquid-solid transition. Kinetic theories based on Smoluchowski’s coagula-
tion equation [45] have recently been applied more and more to describe the
kinetics of gelation. The Smoluchowski equation describes the time evolution of
the cluster size distribution N(k):

dN(k)

dt
"

1

2
+

i`j/k

K
ij
N (i)N ( j)!N (k)

=
+
j/1

K
kj

N ( j) (2-19)

N(k) denotes the number of clusters of size k (i.e. k-mers), and K
ij

is the reaction
kernel that gives the probability of a cluster of size i reacting with one of size j.
The first sum accounts for coalescence of clusters of size i and (k!i) to give
a cluster of size k, while the second sum accounts for the loss of clusters of size
k due to binary collisions with other clusters. The Smoluchowski equation is
able to describe and distinguish between gelling and non-gelling systems. In the
former, the mean cluster size diverges as t approaches the gel point t

#
; in the

latter it keeps increasing with time. Although the equation was originally
developed only for irreversible coagulation, it can be easily extended to revers-
ible coagulation by adding fragmentation kernels F

ij
to describe the unimolecu-

lar fragmentation process [46]:

dN(k)

dt
"

1

2
+

i`j/k

MK
ij
N (i)N ( j)!F

ij
N (k)N

!

=
+
j/1

MK
kj

N(k)N ( j)!F
kj

N (k#j)N (2-20)
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where F
ij

describes the probability of a (i#j) -mer to break up and form and
i-mer and a j-mer. Both Equations 2-19 and 2-20 constitute infinite sets of
coupled non-linear equations which have to be solved for a given initial cluster
size distribution N (k, t

0
) .

The difficulty is now to determine the functional form of the reaction and
fragmentation kernels, K

ij
and F

ij
. The specific form is determined by the

coagulation mechanism. For gelation processes, usually only the reaction kernel
K

ij
is considered, i.e. the process is viewed as being irreversible. A variety of

kernels for coagulation processes can be found in the literature [47]. Most of
these kernels are homogeneous functions of i and j, at least for large i and j. Ernst
[47] and Van Dongen and Ernst [48] used two exponents k and l to describe
the i and j dependence of K

ij
"K(i, j):

K(ai, aj)"a"K (i, j)"a"K(j, i) (2-21a)

K(i, j)Jik jl (2-21b)

with j<1 and j"k#l. Two physical restrictions exist on the exponents k and
l, because the reaction rate cannot increase faster than the cluster size:
""k#l)2 and l)1. " characterizes the reaction rate of two large inter-
penetrable clusters, i.e. K( j, j )Jjk`l, and l describes the reaction of a large
cluster with a very small cluster, i.e. K (1, j)Jjl. Furthermore, " also decides
whether the Smoluchowski equation describes aggregation or gelation, i.e. the
formation of an infinite cluster in finite time only occurs if "'1.

Three growth classes are usually distinguished. These are class I with k'0,
class II with k"0 and class III with k(0. In the case of class I, growth
interactions between two large clusters are dominant. Class I growth can
describe both aggregating and gelling systems. For gelation, l)1(")2. The
cluster distribution decays as N (k)Jk~q with q"1

2
("#3)'2. Also, near the

gel point, the weight average mass defined as M
8
"+k2N(k)/+ kN(k) diverges

as M
8
JDt!t

#
D~c with c"(3!")/("!1), the typical cluster mass (the

z-average mass, M
;
"+k3N(k)/+ k2N (k)) diverges as M

;
JDt!t

#
D~1@p with

p"("!1)/2, and the gel fraction diverges as f
'
JDt!t

#
Db with b"1 [49].

These scaling equations correspond to Eqs. 2-8, 2-5, 2-10, and 2-7, respectively,
as presented earlier in this Section. If one uses the Flory-Stockmayer gelation
theory, the reaction kernel equals K

ij
"ij, since all sites on a cluster are assumed

to be equally reactive [50]. This is a typical example of a homogeneous kernel
which gives class I growth. The exponents are therefore k"1 and l"1,
resulting in ""2. This results in scaling exponents q"2.5, c"1, p"0.5, and
b"1, which are also predicted by the FS-theory (see section 2.1.).

In class II growth, the large-large (class I) and small-large (class III) interac-
tions are equal. Since k"0, it follows that l"". Because of the restriction on
l(l)1) and the requirement of "'1 for gelation this class can only describe
non-gelling growth. Interactions between small and large clusters govern class
III growth. From k(0, it follows that l'", i.e. class III growth is defined by
"(l)1. Like class II growth, it can only describe aggregation.
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2.7 Computer Simulations

Alternatively, Leung and Eichinger [51] proposed a computer simulation ap-
proach which does not assume any lattice as the classical and percolation
theory. Their simulations are more realistic than lattice percolation, since
spatially closer groups form bonds first and more distant groups at later stages
of network formation. However, the implicitly introduced diffusion control is
somewhat obscure. The effects of intramolecular reactions were more realisti-
cally quantified, and the results agree quite well with experimental observations
[52, 53].

3 Viscoelastic Properties at and around the Liquid-Solid Transition

3.1 Linear Viscoelasticity of Liquids and Solids

The time-dependent rheological behavior of liquids and solids in general is
described by the classical framework of linear viscoelasticity [10, 54]. The stress
tensor q may be expressed in terms of the relaxation modulus G(t) and the strain
history:

q(t)"P
t

~=

LG(t!t@)
Lt@

C~1 (t; t@) dt@ (3-1)

or, alternatively:

q(t)"!P
t

~=

G (t!t@)
LC~1 (t; t@)

Lt@
dt@ . (3-2)

The relaxation modulus is often expressed with the relaxation time spectrum,
Eq. 1-4:

q(t)"G
%
C~1(t; t

0
)#P

t

~=
P

j.!9

0

H(j) e~(t~t{)@j
dj
j2

C~1(t; t@) dt@ (3-3)

Here we describe the strain history with the Finger strain tensor C~1(t;t@) as
proposed by Lodge [55] in his rubber-like liquid theory. This equation was
found to describe the stress in deforming polymer melts as long as the strains are
small (second strain invariant below about 3 [56] ). The permanent contribution
G

%
C~1(t; t

0
) has to be added for a linear viscoelastic solid only. C~1(t; t

0
) is the

strain between the stress free state t
0

and the instantaneous state t. Other strain
measures or a combination of strain tensors, as discussed in detail by Larson
[57], might also be appropriate and will be considered in future studies.
A combination of Finger C~1(t; t@) and Cauchy C(t; t@) strain tensors is known to
express the finite second normal stress difference in shear, for instance.
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1Our first two critical gels had an exponent value of n+0.5, which made us believe initially that this
would be the only possible value

The stress q is more difficult to model for a material which is deforming while
solidifying. A crosslinking polymer, for instance, constantly introduces new
crosslinks even during relaxation processes. Molecules or segments of molecules
gradually lose their mobility, since the crosslinking locks them into their relative
positions with neighboring molecules. As a starting point, we consider materials
for which the crosslinking reaction has been stopped or slowed down so severely
that they may be treated as chemically stable during a rheological experiment.
This quasi-stability will be explained further in Sect. 6.2.

3.2 Viscoelastic Material Functions of Critical Gels

We expect that the classical framework of linear viscoelasticity also applies at
the gel point. The relaxation spectrum for the critical gel is known and can be
inserted into Eq. 3-3. The resulting constitutive equation will be explored in
a separate section (Sect. 4). Here we are mostly concerned about the material
parameters which govern the wide variety of critical gels.

The linear viscoelastic behavior of the critical gel, as defined in Eqs. 1-1 and
1-5, depends on two material parameters, the relaxation exponent n and the
front factor S. Depending on their values, the critical gel is more soft or more
stiff. The relaxation exponent strongly depends on molecular and structural
details which affect the development of long range connectivity. These are
molecular weight of the precursor, stoichiometric ratio, amount and molecular
weight of inert diluent in the material, and bulkiness of the crosslinks (filler
effect). The relaxation exponent does not have a universal value, as one might
expect for a property at a critical point.1 The critical gel is generally very soft
and fragile when the relaxation exponent is large, nP1, and the front factor S is
small. Stiff critical gels have a small n value (nP0) and a large S. For many
systems, the front factor is not independent, but depends on the relaxation
exponent

S"G
0
jn
0
, (3-4)

where G
0

and j
0

are the plateau modulus of the fully crosslinked material and
the characteristic time of the precursor molecule (building block of the gel),
respectively [58, 59]. This ensures a soft gel for nP1 and a stiff gel for nP0.
Figure 10 shows data of S and n measured by Izuka et al. [59] on polycaprolac-
tone critical gels with different stoichiometric ratios. The dashed line connects
the modulus of the fully crosslinked material and the zero-shear viscosity of the
precursor, which is in the order of G

0
j
0
.

The gel stiffness, S, was also found to depend on the molecular weight of the
polymer precursor. For end-linking PDMS, S decreases with increasing
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Fig. 10. Experimental values of the gel stiffness S plotted against the relaxation exponent n for
crosslinked polycaprolactone at different stoichiometric ratios [59]. The dashed line connects the
equilibrium modulus of the fully crosslinked material (on left axis) and the zero shear viscosity of the
precursor (on right axis)

M
8

because of an increase in strand length between crosslinks [7]. In contrast,
vulcanizing polybutadienes of high molecular weight (M

8
'entanglement

molecular weight) show a relaxation exponent of about or somewhat below 0.5
and an increase in gel stiffness with increasing precursor molecular weight. For
this study, De Rosa and Winter [60] crosslinked polybutadienes (PBD) with
long linear molecules of (nearly) uniform molecular weight and measured the
relaxation time spectrum at increasing extents of reaction (Fig. 11 depicts the
critical gel spectrum for the PBD with a molecular weight of 44 000). The
precursor molecular weight was chosen to be ten or more times the entangle-
ment molecular weight. The precursor’s relaxation follows the BSW spectrum
[61, 62]. Near the gel point, the plateau modulus of the entanglement region
(intermediate time scales) is surprisingly little affected by the crosslinking
(Fig. 12). Only at higher extents of crosslinking, beyond the gel point, does the
plateau modulus start to increase significantly. A scaling relation between S and
M was found to be valid for these materials:

SJM3.4n (3-5)

where 3.4 is the well known scaling exponent of the viscosity-molecular weight
relation.

For describing the observed molecular weight effects in chemical gels,
we propose to distinguish three regions based on the precursor molecular
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Fig. 11. Schematic of relaxation time spectrum of the critical gel of PBD 44 (M
w
"44 000). The

entanglement and glass transition is governed by the precursor’s BSW-spectrum, while the CW
spectrum describes the longer modes due to the crosslinking [60]. j

0
denotes the longest relaxation

time of PBD44 before crosslinking

Fig. 12. Dynamic moduli master curves of PBD 44 precursor (p" 0) and PBD 44 critical gel [60].
The entanglement and glass transition regime is hardly affected by the crosslinking. Open symbols
correspond to G@, filled ones to GA

192 H.H. Winter and M. Mours



weight M:

1. Low molecular weight M: M(M
GAUSS

: n+0.7—0.8
2. Intermediate molecular weight: M

GAUSS
(M(M

%
: n+0.4—0.7

3. High molecular weight: M'M
%
: n+0.4—0.5.

M
GAUSS

is the molecular weight above which chains show Gaussian behavior.
Very short chains, M(M

GAUSS
, associate into molecular clusters with non-

Gaussian building blocks, and the resulting critical gel is very stiff. Extensive
data have been reported in the literature on these systems [38, 39, 63, 64].
Intermediate molecular weight precursors, M

GAUSS
(M(M

%
, already give

much lower relaxation exponents [5—7, 18, 58, 65]. The lowering of the relax-
ation exponent has been attributed to screening of excluded volume and
hydrodynamic interaction [44].

Deficiency of cross-linker molecules (off-balancing of stoichoimetry) was
found to increase the relaxation exponent value [7, 65, 66]. The gel becomes
more ‘lossy’, and stress relaxation is accelerated. Adding of a non-reacting low
molecular weight solvent also increases the relaxation exponent [58, 65], even in
physical gels [67]. Both effects have been attributed to screening [44, 65].

On the other hand, ‘bulky’ crosslinks as developed during the crystallization
of polymer melts (no solvent) lower the relaxation exponent. The lowest values
of n which we have been able to generate so far occurred with physical gels in
which the crosslinks consisted of large crystalline regions [68, 69].

This regular pattern in the relaxation exponent has been recognized for
a wide range of chemically and physically gelling systems. The full range of gel
properties should be explored further and should be utilized technically. The
molecular or structural origin of these variations is not yet known to the extent
where quantitative predictions could be derived from first principles. From
a practical point of view, it is advantageous that the relaxation exponent is
non-universal, since it allows us to prepare nearly critical gels with a wide range
of properties as needed for specific applications.

3.3 Viscoelastic Material Functions Near LST

The simplest expression incorporating the basic features of self-similarity and
cut-off for nearly critical gels has the spectrum of the critical gel altered by
a cut-off at the longest time [19]:

H(j, p)"G
S

!(n)
j~n for j

0
(j(j

.!9
(p)

0 for j'j
.!9

(p)

, (3-6)

The same form of self-similar spectrum will be applied to the sol and the
transient part of the gel. The consequences of this most simple spectrum will be
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explored in the following. Introducing Eq. 3-6 into the equation for the relax-
ation modulus, Eq. 1-4, gives

G(t)"G
%
(p)#

S

!(n) P
j.!9(p)

0

j~ne~t@j
dj
j

(3-7)

The diverging longest relaxation time, Eq. 1-6, sets the upper limit of the
integral. The solid (gel) contribution is represented by G

%
. The crossover to any

specific short-time behavior for j(j
0

is neglected here, since we are mostly
concerned with the long-time behavior.

We can also calculate other viscoelastic properties in the limit of low shear
rate (linear viscoelastic limit) near the LST. The above simple spectrum can be
integrated to obtain the zero shear viscosity g

0
, the first normal stress coefficient

t
1

at vanishing shear rate, and the equilibrium compliance J0
%
:

g
0
(p)"P

j.!9

0

H(j) dj"
Sj1~n

.!9
(1!n)!(n)

, (3-8)

t
1
(p)"2P

j.!9

0

H (j)jdj"
2Sj2~n

.!9
(2!n)!(n)

, (3-9)

J0
%
"

t
1

2g2
0

"

!(n)

S

(n!1)2

2!n
jn
.!9

. (3-10)

This most simple model for the relaxation time spectrum of materials near the
liquid-solid transition is good for relating critical exponents (see Eq. 1-9), but it
cannot be considered quantitatively correct. A detailed study of the evolution of
the relaxation time spectrum from liquid to solid state is in progress [70].
Preliminary results on vulcanizing polybutadienes indicate that the relaxation
spectrum near the gel point is more complex than the simple spectrum presented
in Eq. 3-6. In particular, the relation exponent n is not independent of the extent
of reaction but decreases with increasing p.

4 Constitutive Modeling with the Critical Gel Equation

4.1 The Critical Gel Equation

Predictions using the observed relaxation time spectrum at the gel point are
consistent with further experimental observations. Such predictions require
a constitutive equation, which now is available. Insertion of the CW spectrum,
Eq. 1-5, into the equation for the stress, Eq. 3-1, results in the linear viscoelastic
constitutive equation of critical gels, called the ‘critical gel equation’

s(t)"nSP
t

~=

(t!t@)~(n`1) C~1(t; t@ ) dt@ at p"p
#
. (4-1)
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It may alternatively be expressed with the rate of strain tensor LC~1
t

(t; t@)/Lt@

s(t)"!SP
t

~=

(t!t@)~n
L
Lt@

C~1 (t; t@) dt@ at p"p
#
. (4-2)

The cross-over to the glass at short times (or to other short-time behavior) is
neglected here, which is justified as long as we only try to predict the long-time
behavior, which is most affected by the solidification process.

The critical gel equation is expected to predict material functions in any
small-strain viscoelastic experiment. The definition of ‘small’ varies from mater-
ial to material. Venkataraman and Winter [71] explored the strain limit for
crosslinking polydimethylsiloxanes and found an upper shear strain of about 2,
beyond which the gel started to rupture. For percolating suspensions and
physical gels which form a stiff skeleton structure, this strain limit would be
orders of magnitude smaller.

4.2 Linear Viscoelastic Modeling of Critical Gels

With the gel equation, we can conveniently compute the consequences of the
self-similar spectrum and later compare to experimental observations. The
material behaves somehow in between a liquid and a solid. It does not qualify as
solid since it cannot sustain a constant stress in the absence of motion. However,
it is not acceptable as a liquid either, since it cannot reach a constant stress in
shear flow at constant rate. We will examine the properties of the gel equation
by modeling two selected shear flow examples. In shear flow, the Finger strain
tensor reduces to a simple matrix with a shear component

(C~1)
12
"c(t; t@) (4-3)

and a difference on the diagonal

(C~1)
11
!(C~1)

22
"(c(t; t@))2 , (4-4)

where

c(t; t@)"P
t

t{

cR (t@@) dt@@ (4-5)

is the shear strain between times t@ and t. These components are inserted into
Eq. 4-1 for calculating the shear stress and the first normal stress difference:

(a) Startup of shear flow at constant rate. An experiment is considered in
which the material is initially kept at rest, cR"0, so that it can equilibrate
completely. Starting at time t"0, a constant shear rate cR

0
is imposed. The

resulting shear stress and normal stresses depend on the time of shearing. The
shear stress response q

21
(t) of the critical gel is predicted as

q
21

(t)"cR
0
SP

t

0

(t!t@ )~n dt@"
1

1!n
cR
0
St1~n . (4-6)
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Fig. 13. Shear stress q
12

and first normal stress difference N
1

during start-up of shear flow at
constant rate, cR

0
"0.5 s~1, for PDMS near the gel point [71]. The broken line with a slope of one is

predicted by the gel equation for finite strain. The critical strain for network rupture is reached at the
point at which the shear stress attains its maximum value

The transient viscosity g"q
21

(t)/cR
0

diverges gradually without ever reaching
steady shear flow conditions. This clarifies the type of singularity which the
viscosity exhibits at the LST: The steady shear viscosity is undefined at LST,
since the infinitely long relaxation time of the critical gel would require an
infinitely long start-up time.

The corresponding first normal stress difference N
1
(t)"q

11
(t)!q

22
(t) as

predicted from Eq. 4-2

N
1
(t)"nSP

t

~=

(t!t@)~(n`1) c (t; t@)2 dt@"
2

2!n
ScR 2

0
t2~n (4-7)

also grows with time without ever reaching a steady value. The ratio of first
normal stress coefficient and viscosity

N
1

cR 2
0

cR
0

q
21

"

2(1!n)

2!n
t (4-8)

grows linearly with time. The relaxation exponent n solely determines the slope
while the front factor cancels out. In experimental studies, the linear growth can
be used as a convenient reference for finding the limits of linear response in this
transient shear experiment (Fig. 13).
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(b) Oscillatory shear. In a frequently used experiment, the sample is sub-
jected to oscillatory shear at small amplitude c

0
. Prescribing a sinusoidal shear

strain c(t) with an angular frequency, u"2nf [rad/s], which is defined by the
number of cycles per time given by the frequency f [Hz],

c(t)"c
0

sin(ut) (4-9)

in Eq. 4-2 and determining the resulting shear stress

q
21

(t)"G@(u) c
0
sin(ut)#GA (u)c

0
cos(ut) (4-10)

results in the following functional form of the dynamic moduli [10], the storage
modulus G@ and the loss modulus GA, at the gel point

G@
#
(u)"

GA
#
(u)

tan(nn/2)
"S!(1!n) cos(nn/2)un

for 0(u(1/j
0
, p"p

#
. (4-11)

Since G@ and GA are proportional to each other, the famous Cole—Cole plots [72]
in which gA(u) is plotted vs. g@(u) [or G@(u) is plotted vs. GA(u)] reduce to straight
lines at the gel point.

The ratio of the two moduli is independent of frequency (Fig. 14)

tan d
#
"

GA
#

G@
#

"tan
nn
2

for 0(u(1/j
0
, p"p

#
. (4-12)

which means that the ‘flat’ phase angle is a direct measure of the relaxation
exponent [7]:

n"
2d

#
n

for 0(u(1/j
0
, p"p

#
. (4-13)

Related material functions are the complex modulus

G*(u)"S!(1!n)un (4-14)

and the storage and loss compliance, J@(u) and J@@(u)

J@(u)"
G@

G@2#G@@2
"

cos nn/2

S!(1!n)
u~n (4-15)

J@@(u)"
G@@

G@2#G@@2
"

sin nn/2

S!(1!n)
u~n (4-16)

(c) Creep and recovery behavior. Similar is the modeling procedure for the
strain in a creep experiment. The most simple creep recovery experiment
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Fig. 14. Loss tangent of several stopped samples of vulcanizing polybutadiene (M
8
"18 000) [31].

At the gel point, tan d is frequency independent (flat curve in the middle). The relaxation exponent
n can be easily evaluated from the data (tan d"1 yields n"0.5)

prescribes a pulse function

q
21
"G

0 for t(0
q
0

for 0(t(t
1

0 for t
1
(t

, (4-17)

where q
0

is the applied shear stress and t
1

is the creep time. The strain response
of any linear viscoelastic material

c(t)"P
t

~=

J (t!t@) qR (t@) dt@ (4-18)

depends on the materials creep compliance J (t!t@). The classical relation
between the creep compliance and the relaxation modulus [10]

t"P
t

0

G(t!s)J (s) ds (4-19)

defines the creep compliance of the critical gel

J(t)"
1

S

sin(nn)

nn
tn for j

0
(t . (4-20)
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Fig. 15. Measured shear strain during creep under a constant shear stress and viscoelastic recovery
after cessation of shear for PDMS near the gel point [71] plotted against the time. The solid lines are
predicted by the gel equation for finite strain

The shear strain response has an analytical solution

c(t)"
q
0
S

sin(nn)

nn
(tn!(t!t

1
)n h(1!t/t

1
)) for t'0. (4-21)

h(x) is the Heaviside step function. It can be seen that neither the creep strain nor
the strain rate will ever reach a steady value in finite times. When removing the
stress, a complete recovery (c

=
"0) is predicted for infinite times. This again is

an example for the intermediate behavior between that of a liquid and a solid
(Fig. 15).

(d) Retardation ¹ime Spectrum. The relaxation behavior of critical gels can
be represented equally well by the retardation time spectrum ¸(j) [73]. Both are
related by

¸(j)H(j)"AA
1

H (j) P
=

0

H(u)

j/u!1

du

u B
2
#n2B

~1
(4-22)

We determine the long time end of the retardation spectrum by approximating
Eq. 1-5 with

H(j)"
S

! (n)
j~n for 0(j(R (4-23)
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due to lack of better information in the time range 0(j(j
0
. Inserting Eq. 4-23

into Gross’s relation, Eq. 4-22, leads to

¸(j)"
!(n)

S

sin2(nn)

n2
jn for j

0
(j(R (4-24)

We assume that the above solution is valid in about the same time range as the
self-similar relaxation time spectrum, Eq. 1-5. The retardation time spectrum is
also self-similar. It is characterized by its positive exponent n which takes on the
same value as in the relaxation time spectrum.

5 Physical Gelation

The long range connectivity in the solidifying material may arise from physical
phenomena instead of from chemical bonds. This process has been termed
physical gelation. The large scale connectivity is meant in the sense that the
motion of one molecule requires the motion of another molecule at considerable
distance. This distance, called correlation length, increases with the advance-
ment of the physical gelation process. The state at which the correlation length
diverges defines the physical gel point. It is more difficult to define this gel point
since in comparison with chemically crosslinking systems two of the most
distinct criteria are missing: the molecular weight does not diverge and the
system may be dissolved even after having passed the gel point.

At the beginning of the gelation process, more bonds are formed than are
broken or dissolved. As a consequence, connectivity and correlation length grow
in the material. However, this process cannot continue for long since the cluster
size has a natural upper limit. This can be visualized by a simple argument. Let
us consider a molecular cluster of N physical bonds with characteristic lifetime,
j
"
. The average lifetime of this cluster is then j

"
/N and the survival probability is

exp(!tN/j
"
). As the cluster grows (increasing N), its survival probability

decreases. The limit is reached at a maximum average cluster size, N
.!9

, at which
the rate of bond breakage reaches the rate of bond formation. The characteristic
time constant is then

j
1'
"

j
"

N
.!9

(5-1)

where the subscript pg stands for physical gel. The material has a corresponding
longest relaxation time, j

.!9
. Early stages of cluster growth are governed by

relaxation processes with a longest relaxation time which grows with the
increasing connectivity. If j

.!9
exceeds j

1'
, then the cluster does not survive the

relaxation process; stress is released by breakage of clusters. This type of
relaxation process has been studied by Cates [74, 75].
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We define a physical gel as a material which shows the gelation transition
and has a j

.!9
after gelation which is orders of magnitude larger than before

gelation. The characteristic equations at the gel point, Eqs. 1-1 and 1-5, need to
be rewritten for a range of applicability j

0
(j(j

1'
. The critical gel equation,

Eq. 4-1, also needs to be rewritten to accommodate this upper limit. The most
simple way to do this is by inserting Eq. 1-5 with modified upper limit (R
changed to j

1'
) into Eq. 3-3:

q(t)"nSP
t

~=
G
!(n#1, (t!t@)/j

1'
)

!(n#1) H (t!t@)~(n`1) C~1(t; t@) dt@ (5-2)

where !(n#1, (t!t@)/j
1'

) is an incomplete gamma function which is defined as

!(n#1, x)"P
=

x

ezzn dz (5-3)

Strictly speaking, the physical gel at the gel point is still a liquid when observed
at experimental times t

1
which exceeds j

1'
. We therefore define a new dimen-

sionless group, the gel number N
'

N
'
"

j
1'
t
1

"

lifetime of physical cluster

process time
(5-4)

The gelation transition is observable for N
'
'10. Otherwise, the material

behaves as a liquid (N
'
(1). Little is known about materials near N

'
"1. For

the following, we consider only materials with N
'
<1 and treat them just like

chemical gels. The expression !(n#1, (t!t@)/j
1'

)/!(n#1) in Eq. 5-2 ap-
proaches a value of one in this case of N

'
<1, and the critical gel equation,

Eq. 4-1, is recovered. However, much work is needed to understand the role
of non-permanent physical clusters on network formation and rheological
properties.

The closest relation to chemical gelation is found with physical network
systems in which the network junctions originate from some physical mecha-
nism such as crystallization, phase separation, ionic bonds, or specific geometric
complexes. Such systems have been reviewed recently by the Nijenhuis [76] and
Keller [77]. Physical networks have the potential advantage that the junctions
open or close when altering the environment (temperature, pressure, pH), i.e. the
gelation process is reversible. The junctions, however, are less well-defined since
their size and functionality (number of network strands which form a junction)
varies throughout a sample. Their finite lifetime makes physical gels fluid-like in
long-time applications, but it also allows them to heal if they get broken. The
reversibility of junctions (and therefore connectivity) upon change of the envi-
ronment in a physical gel is a characteristic feature which distinguishes it, for
instance, from a highly entangled polymer melt or solution.

Beyond the notion of physical networks in which flexible strands are connec-
ted by junctions, we will use the term ‘physical gelation’ in the widest possible
sense for polymeric systems which undergo liquid-solid transition due to any
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type of physical mechanism which is able to connect the polymer into large scale
structures. These are quite manifold:
(a) Polymers lose their chain flexibility near their glass transition temperature

and molecular motion correlates over longer and longer distances.
(b) Liquid crystalline polymers at their transition from nematic to smectic state

gradually lose their molecular mobility.
(c) Suspensions in which the filler particles aggregate into sample spanning

complexes.
The liquid-solid transition for these systems seems to have the same features

as for chemical gelation, namely divergence of the longest relaxation time and
power law spectrum with negative exponent.

Physical gelation responds strongly to stress or strain. The rate of bond
formation, and therefore the growth rate of the correlation length, increases for
some systems (increased rate of crystallization in semi-crystalline polymers;
stress induced phase separation in block copolymers), but it also might decrease
if the survival time of physical bonds is reduced by stress. Beyond the gel point,
i.e. if the material is able to form sample spanning clusters which are character-
ized by multiple connectivity, physical gels are prone to creep under stress since
bonds dissociate at a material-characteristic rate. This allows local relaxation of
stress and reformation of physical bonds at reduced stress. In this case, breakage
of a bond does not necessarily result in a reduction of the size of a cluster. Also, if
stress is applied, the average lifetime of a bond, j

"
, decreases because of the

energy input. This results in a reduction of j
1'

, which causes a reduction of the
associated longest relaxation time, j

.!9
.

5.1 Physical Network Systems

Physical network systems, especially crystallizing polymers, represent the most
widely investigated physically crosslinking macromolecular systems [68, 69,
78—81]. These systems comprise polymer melts and solutions in which network
junctions are formed by small crystalline regions during the liquid-solid
transition after cooling below the relevant melting temperature. The kinetics of
this crystallization process depend on the degree of supercooling, *¹, and
rheological properties are also influenced by *¹. A typical temperature profile
for a crystallization experiment and the resulting evolution of fraction of
crystalline polymer and dynamic moduli with time are shown schematically in
Fig. 16. Although most crystallizing polymers exhibit the self-similar relaxation
behavior at an intermediate state (Fig. 17 shows tan d at different times after
cooling below ¹

.
for a crystallizing polypropylene [68]), as commonly found in

chemically crosslinking systems at the gel point, some systems showed no such
power law relaxation at certain degrees of supercooling. This was attributed to
non-uniform crystallization, which does not result in self-similar relaxation [69].
Also, the presence of melt state phase separation and residual high melting
crystals can mask this characteristic relaxation pattern [68]. One of the
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Fig. 16. Schematic of a typical temperature profile in a crystallization experiment and the resulting
evolution of the fraction of crystalline polymer and dynamic moduli with time. The preheating
temperature ¹

1
is above the melting temperature ¹

.

Fig. 17. Loss tangent of a crystallizing polypropylene at different times after cooling from
¹"100 °C to ¹"40 °C (below ¹

.%-5
). Data from Lin et al. [68].
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Fig. 18a, b. Possible morphologies of partially crystalline polymers. Small crystallites act as cross-
links (a); large ribbon-shaped or needle-shaped crystalline regions connect a large number of
polymeric chains (b)

investigated systems, a bacterial polyester, followed the time-cure superposition
principle in the liquid state up to the gel point [69]. This principle, however,
could not be verified for samples beyond the gel point.

In general, low relaxation exponents n (between 0.1 and 0.25) are character-
istic for crystallizing polymers, although some systems are known which show
a stronger dependence on frequency (n+0.7!0.8). A recent study on crystalliz-
ing isotactic polypropylene (iPP) resulted in a surprisingly low degree of crystal-
linity at the LST [80], which is a challenge to classical crystallization models.
iPP forms a critical gel which is extremely soft (small S, large n).

Possible morphologies of partially crystalline polymers are shown in Fig. 18.
Figure 18a depicts the case of small crystallites that act as physical crosslinks
between polymeric chains, thus connecting those chains into a 3-dimensional
network. In the case depicted in Fig. 18b, the material forms ribbon-shaped or
needle-shaped crystalline regions in which different segments of a large number
of chains are incorporated. This could explain the low degree of crystallinity at
the LST as detected for the iPP system [80].

Reversible gelation is often encountered in bio-polymeric systems. Typical
examples are solutions of polypeptide residues derived from animal collagen
[82—84]. In these systems, ordered collagen-like triple helices form the physical
crosslinks.

Microphase separated systems are also known to yield a physical network
which results in the self-similar relaxation pattern at an intermediate state
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corresponding to the LST. Examples in which such behavior was observed are
a segmented polyurethane elastomer with liquid crystalline hard segments (in
which the phase-separated submicron mesophase acts as a provider of crosslinks
below the isotropization temperature of the mesophase [85]) and several dib-
lock and triblock copolymers with microphase separation below the ODT
temperature [86, 87]. A styrene-isoprene-styrene triblock copolymer system,
for example, showed rapid microphase separation after cooling below the
ODT temperature, while the large scale spatial order, resulting in a physical
network, needed long annealing times. It was recently suggested that the
disappearance of a terminal zone behavior, as encountered in block copolymers
below the ODT temperature, is generally true for any polymer with layered
structure [87].

Recently, it was shown that polydimethylcarbosiloxanes with a small con-
tent of side carbonyl groups (PDMS-C) exhibit increasing viscosity and forma-
tion of a physical network at elevated temperatures [88, 89]. This was attributed
to a rearrangement of intramolecular hydrogen bonds, which formed between
the carboxyls during the synthesis and isolation of the polymers, forming
intermolecular hydrogen bonds.

5.2 Dynamic Glass Transition

A glass transition is introduced dynamically when probing polymer molecules
on such short time scales (in a high frequency dynamic experiment, for instance)
that conformational rearrangements have no time to develop. The spectrum of
polymers in this dynamic glass transition region is given by a power law with
negative exponent. This has already been realized by Tobolsky [90], who
introduced a wedge-box spectrum to describe entangled polymer melts where
the ‘wedge’ (power law with negative slope) represented the relaxation behavior
in the glass transition region. At long times this behavior is masked by the onset
of the entanglement and/or flow regime. The glass transition spectrum looks like
the CW spectrum for the critical gel except that it is cut off at a characteristic
relaxation time, j

#)!3
, i.e. the longest relaxation time is finite. This suggests that

a polymer at the glass transition might be considered in the physical gel
framework.

The amorphous solid state may be viewed as an extension of the liquid phase
below a characteristic temperature. For low molecular weight materials, the
atoms are frozen into their relative position at low temperatures [91]; this is
called configurational freezing. For high molecular weight materials such as
polymers, the molecular conformations freeze in and arrest molecular motion
(conformational freezing); the temperature of conformational freezing is called
glass transition temperature. ¹

'
. ¹

'
is above the temperature of configurational

freezing. The conformational freezing results in an increase of the correlation
length for molecular motion. The divergence of the correlation length denotes
the instant of solidification; thus the relaxation of the material is similar to that
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of a physical gel. The cut-off time j
#)!3

(¹ ) of the relaxation spectrum depends on
temperature and becomes very long when the temperature is lowered towards
the glass transition temperature, ¹

'
, but it remains finite at ¹

'
. Dynamic

mechanical experiments near ¹
'
are needed for exploring the applicability of the

gelation framework here. A very comprehensive study of dynamic mechanical
behavior near ¹

'
has been given by Zorn et al. [92].

The glass transition involves additional phenomena which strongly affect
the rheology: (1) Short-time and long-time relaxation modes were found to
shift with different temperature shift factors [93]. (2) The thermally introduced
glass transition leads to a non-equilibrium state of the polymer [10]. Because of
these, the gelation framework might be too simple to describe the transition
behavior.

5.3 Liquid Crystalline Polymers at their Nematic-Smectic
Transition

Viscoelastic response of liquid crystalline polymers (LCP) is very sensitive to
smectic-nematic and smectic-isotropic phase transitions. Typical side chain
LCPs with mesogenic groups pendant to flexible backbones show liquid-like
relaxation behavior at low frequencies in the nematic state, i.e. the storage
modulus, G@, is proportional to frequency, u, and the loss modulus, G@@, is
proportional to u2. At intermediate frequencies, a power law dependence best
describes the dynamic moduli [94, 95]. Chemically crosslinking polymers
below the gel point show the same behavior, which is followed by a transition
to entanglement and/or glass transition regime at higher frequencies. LCPs in
the smectic phase do not exhibit a low frequency drop-off to liquid-like behav-
ior, at least not in the experimentally observable frequency regime. G@ and G@@
seem to level off at low frequency, suggesting a more solid-type relaxation
behavior. No real power-law dependence is observed in the smectic mesophase;
however, at intermediate frequencies indications of self-similar relaxation can be
observed.

5.4 Suspensions

Transition from liquid behavior to solid behavior has been reported with fine
particle suspensions with increased filler content in both Newtonian and non-
Newtonian liquids. Industrially important classes are rubber-modified polymer
melts (small rubber particles embedded in a polymer melt), e.g. ABS (acrylo-
nitrile-butadiene-styrene) or HIPS (high-impact polystyrene) and fiber-
reinforced polymers. Another interesting suspension is present in plasticized
polyvinylchloride (PVC) at low temperatures, when suspended PVC particles
are formed in the melt [96]. The transition becomes evident in the following
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experimental observations:
z The limiting storage modulus (at low frequencies) and relaxation modulus (at

long times) become finite at high concentration, while they are zero at low
concentration [97—102].

z The zero-shear viscosity and the dynamic viscosity (at low frequencies) diverge
at high concentration, while they are constant at low concentration
[99, 100, 102—105].
Liquid-solid transitions in suspensions are especially complicated to study

since they are accompanied by additional phenomena such as order-disorder
transition of particulates [98, 106, 107], anisotropy [108], particle-particle inter-
actions [109], Brownian motion, and sedimentation-particle convection [109].
Furthermore, the size, size distribution, and shape of the filler particles strongly
influence the rheological properties [108, 110]. More comprehensive reviews on
the rheology of suspensions and rubber modified polymer melts were presented
by Metzner [111] and Masuda et al. [112], respectively.

Oscillatory shear experiments are the preferred method to study the
rheological behavior due to particle interactions because they directly probe
these interactions without the influence of the external flow field as encountered
in steady shear experiments. However, phenomena that arise due to the external
flow, such as shear thickening, can only be investigated in steady shear experi-
ments. Additionally, the analysis is complicated by the different response of the
material to shear and extensional flow. For example, very strong deviations
from Trouton’s ratio (extensional viscosity is three times the shear viscosity)
were found for suspensions [113].

We expect the liquid/solid transition to express itself in the same general
relaxation patterns as chemical gelation, with a self-similar relaxation time
spectrum at the gel point. A starting point for this hypothesis is the work of
Castellani and Lomellini [102, 114], who compared the rheology of rubber-
modified thermoplastics with increasing rubber content to the behavior during
physical gelation. The relaxation spectra of ABS with different PBD content
presented by Masuda et al. [112] also suggest this approach, since they seem to
contain a power law at long times.

6 Rheometry Near the Gel Point

Viscoelastic properties on intermediate time scales are most appropriate for
studying gelation. The stretching of the spectrum in the approach of the gel
point (from either side), and the self-similarity of the spectrum at the gel point
can best be observed by forcing the material through the transition while
simultaneously measuring its continuously evolving linear viscoelastic proper-
ties. Small strain tests are preferable, since they avoid rupturing the fragile
network structure. No specific equipment is required beyond what one would

Rheology of Polymers Near Liquid-Solid Transitions 207



use for characterizing viscoelasticity in liquids or solids. Most common are
rotational rheometers with concentric disk fixtures, cone and plate fixtures, or
Couette geometry. Samples have to be prepared in the rheometer fixtures since
they are too fragile and too sticky to be transferred later.

6.1 Oscillatory Shear

Small amplitude oscillatory shear is the method of choice for materials with very
broad distributions of relaxation modes, such as materials near LST, and for
materials which undergo change during the measurement. The dynamic moduli
in Eq. 4—10 are defined by [10]

G@(u)"G
%
#uP

=

0

[G(t)!G
%
] sin(ut) dt"storage modulus, (6-1)

GA(u)"uP
=

0

G(t) cos(ut)dt "loss modulus. (6-2)

The above equations are generally valid for any isotropic material, including
critical gels, as long as the strain amplitude c

0
is sufficiently small. The material

is completely characterized by the relaxation function G (t) and, in case of a solid,
an additional equilibrium modulus G

%
.

The basic advantages of small amplitude oscillatory strain (shear or exten-
sion) come through its spectroscopic character, the experimental time for taking
a single data point being roughly equal to the period of the strain wave, 2n/u.
This allows to measure specific relaxation modes with time constants in the
order of 1/u independently of any longer or shorter modes which might be
present in the polymer, i.e. only a small fraction of the spectrum is actually
sampled. This is shown in Fig. 19, where a single power law spectrum with
negative exponent (n"0.7) was used to calculate the integral kernels of the
following equations at u"j/j

0
.

G@(u)"P
j.!9

0

H (j)
(uj)2

1#(uj)2
dj
j

(6-3)

GA(u)"P
j.!9

0

H (j)
uj

1#(uj)2
dj
j

(6-4)

The divergence of the longest relaxation time does not perturb the measurement.
In comparison, steady state properties (the steady shear viscosity, for instance)
would probe an integral over all relaxation modes and, hence, fail near the gel
point.
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Fig. 19. F@ (j/j
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Typical for the spectroscopic character of the measurement is the rapid
development of a quasi-steady state stress. In the actual experiment, the sample
is at rest (equilibrated) until, at t"0, oscillatory shear flow is started. The shear
stress response may be calculated with the general equation of linear viscoelas-
ticity [10] (introducing Eqs. 4-3 and 4-9 into Eq. 3-2)

q
21

(t)"P
0

~=

0#P
t

0

G(t!t@)uc
0

cos(ut@) dt@ (6-5)

The first integral denotes the rest period, !R(t@(0, where the strain rate is
zero. The second integral contains a relaxation function which we chose very
broad, including relaxation times much larger than the period 2n/u. Integration
and quantitative analysis clearly showed (without presenting the detailed figures
here) that the effect of the start-up from rest is already very small after one cycle
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Fig. 20. Dynamic moduli, G@ (open symbols) and G@@ ( filled symbols), for five partially crosslinked
PDMS samples at different extents of reactions (same data as Fig. 2). G@ curves downward for the
liquid and curves to the left for the solid. The straight lines belong to the sample which is very close to
the gel point. t!t

#
is given in minutes

and definitely is negligible after two cycles. Eq. 6-5 simplifies to

q
21

(t)+P
t

~=

G(t!t@)uc
0
cos(ut@) dt@ (6-6)

The start-up time does not depend on the longest relaxation time of the material
even if it is orders of magnitude larger than the period 2n/u [115]. This is an
important prerequisite for an experiment near LST.

The dynamic mechanical experiment has another advantage which was
recognized a long time ago [10]: each of the moduli G@ and GA independently
contains all the information about the relaxation time distribution. However,
the information is weighted differently in the two moduli. This helps in detecting
systematic errors in dynamic mechanical data (by means of the Kramers-Kronig
relation [54]) and allows an easy conversion from the frequency to the time
domain [8, 116].

Figures 20 and 21 show typical dynamic moduli and loss tangent distribu-
tions. These were measured by Chambon and Winter [5] on several partially
crosslinked samples of PDMS.

Limitations of the experiment at low frequencies come from the long experi-
mental times, during which the sample structure may change so much that
the entire experiment becomes meaningless. At high frequencies, limitations
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Fig. 21. Loss tangent, tan d, for five partially crosslinked PDMS samples at different extents of
reactions. For the liquid, a negative slope is observed. At the LST, tan d is independent of frequency.
The loss tangent of the solid material exhibits a positive slope

arise from inertial effects. The effect of changes in the sample will be discussed
next.

6.2 Sample Mutation

One really would like to know G@ and GA data over an as wide as possible
frequency window of the sample at intermediate states during the transition.
This has been achieved best for chemical gelation by stopping the reaction at
intermediate extents p with a catalyst poison [5] and then probing the stable
samples (see Figs. 20 and 21). However, this stopping of the crosslinking is only
possible for exceptional materials. More common is the situation where the
transition process cannot be brought to a halt. The solidifying material has to be
probed without stopping the reaction. Each data point in a sequence of
measurements, having a sampling time *t, belongs to a different state of the
material. This is displayed schematically in Fig. 22. Since the properties at these
intermediate frequencies evolve continuously, interpolation may be used to
determine the properties at any time in between the measurements. The data are
interpolated to obtain the material properties at discrete material states. By this
procedure [58, 117, 118], a range of properties is available at discrete states of
the evolving material structure.
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Fig. 22. Schematic evolution of dynamic moduli during crosslinking. The time period *t corre-
sponds to the time necessary for a rheological measurement in case of a reacting sample. If the
reaction is stopped, *t corresponds to the time in which the poison diffuses into the sample.
The reaction is still carried on until the entire sample is poisoned. Then, the moduli remain
constant

The effect of mutation is different in case of stopped samples, but the
phenomenon cannot be completely avoided. Here, the experimental time period
*t is determined by the poison diffusion. The catalyst poison solution is sprayed
on top of a reacting sample and then diffuses into the core of the sample where it
stops the reaction sequentially layer by layer. This leads to small inhomogeneity
in the sample, since the reaction near the upper surface is stopped earlier than
the reaction near the bottom of the mold.

Sample changes during the measurement might cause severe problems. The
shear stress response of a crosslinking system exemplifies this nicely:

q
21

(t)"P
t

~=

G tA/t
tA/t{

[t, t@, p(tA)]uc
0
cos(ut@)dt@ (6-7)

The stress depends on the extent of reaction, p(t@), which progresses with time.
However, it is not enough to enter the instantaneous value of p (t@). Needed is
some integral over the crosslinking history. The solution of the mutation
problem would require a constitutive model for the fading memory functional
G tA/t

tA/t{
[t, t@, p(tA)], which is not yet available. This restricts the applicability of

dynamic mechanical experiments to slowly crosslinking systems.
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The mutation number [117, 119]

N
.6

"*t
1

g

Lg

Lt
(6-8)

gives an estimate of the relative changes of a measured variable g (standing here
for G@ or GA) during the sampling time *t. The spectroscopic character of
dynamic mechanical experiments somehow alleviates the mutation problem.
Mutation effects are considered negligible if the moduli G@ and GA change by
10% or less (N

.6
(0.1) during the experimental time, 2n/u. Equivalent criteria

apply to all the various material functions. The decisive dimensionless group
(mutation number) has to stay below an acceptable tolerance level, N

.6
(0.1.

We mostly chose to probe each frequency individually to minimize the strain
on the material and to expand the available frequency window. The experi-
mental time can be reduced by simultaneously applying the sinusoidal strains of
the lowest frequencies [120] and then quickly adding the higher frequency part
of the spectral probing.

Time-resolved measurements on the changing sample have the advantages
that the critical gel properties can be obtained from a single experiment and that
a value for the rate of evolution of properties comes with the data.

6.3 Time-Temperature Superposition

Time-temperature superposition [10] increases the accessible frequency window
of the linear viscoelastic experiments. It applies to stable material states where
the extent of reaction is fixed (‘stopped samples’). Winter and Chambon [6] and
Izuka et al. [121] showed that the relaxation exponent n is independent of
temperature and that the front factor (gel stiffness) shifts with temperature

S(¹ )"S (¹
0
)
a n
T
b
T

. (6-9)

This behavior is in between that of a liquid and a solid. As an example, PDMS
properties obey an Arrhenius-type temperature dependence because PDMS is
far above its glass transition temperature (about !125°C). The temperature
shift factors are

a
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"expG
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BH ; b
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"

o (¹
0
)¹

0
o(¹ )¹

. (6-10)

From the PDMS shift factors determined by Winter and Chambon, one may
estimate that room temperature fluctuations affect the gel strength by no more
than 5%.

Time-temperature superposition at the gel point does not let us distinguish
between the vertical and the horizontal shift, since the spectra are given by

Rheology of Polymers Near Liquid-Solid Transitions 213



straight lines in a log/log plot. We can only determine the total product an
T
/b

T
[121] without being able to break it down into separate values a

T
and b

T
. For

polymers at temperatures far above the glass transition temperature ¹
g
, how-

ever, the crosslinking does not seem to affect the shift factors in any major way
and a

T
and b

T
values may approximately be taken from the temperature

dependence of the precursor viscosity and the modulus of the fully crosslinked
system, respectively. This has been found for crosslinking polycaprolactones far
above the glass transition temperature [121]. More experiments are needed to
confirm this very simple relation. It is expected to loose its validity for samples
for which crosslinking strongly increases ¹

g
.

6.4 Time-Cure Superposition

Measurement of the equilibrium properties near the LST is difficult because long
relaxation times make it impossible to reach equilibrium flow conditions without
disruption of the network structure. The fact that some of those properties diverge
(e.g. zero-shear viscosity or equilibrium compliance) or equal zero (equilibrium
modulus) complicates their determination even more. More promising are time-
cure superposition techniques [15] which determine the exponents from the
entire relaxation spectrum and not only from the diverging longest mode.

Adolf and Martin [15] postulated, since the near critical gels are self-similar,
that a change in the extent of cure results in a mere change in scale, but the
functional form of the relaxation modulus remains the same. They accounted for
this change in scale by redefinition of time and by a suitable redefinition of the
equilibrium modulus. The data were rescaled as G@/G

%
(p) and GA/G

%
(p) over

uj
.!9

(p). The result is a set of master curves, one for the sol (Fig. 23a) and one for
the gel (Fig. 23b).

Time-cure superposition is valid for materials which do not change their
relaxation exponent during the transition. This might be satisfied for chemical
gelation of small and intermediate size molecules. However, it does not apply to
macromolecular systems as Mours and Winter [70] showed on vulcanizing
polybutadienes.

6.5 Growth Rate of Moduli

The rate of change through the transition has not been studied widely. However,
the growth of G@ and GA due to the increasing network connectivity seems to
follow a regular pattern. For all our experiments of that type which were
restricted by the accessible frequency range of the rheometer, the growth rate of
G@ at the gel point was typically twice as high as that of GA:

A
1

G@
LG@
Lp Bu:2A

1

G@@
LGA
Lp Bu for finite u . (6-11)
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Fig. 23. Master curve obtained by time cure superposition of data on curing epoxy (a) before the
LST and (b) after the LST [15]
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Fig. 24. Schematic of the evolution of the dynamic storage modulus, G@, with extent of reaction, p, at
four different frequencies

The growth rate decreases with frequency. Figure 24 shows this schematically
for the storage modulus. The frequency dependence is the same for both G@ and
GA, and it also follows a power law (Fig. 25).

A
1

G@
LG@
Lp BuJA

1

GA
LGA
Lp BuJu~i for p near p

#
. (6-12)

Precise knowledge of the critical point is not required to determine i by this
method because the scaling relation holds over a finite range of p at intermediate
frequency. The exponent i has been evaluated for each of the experiments of
Scanlan and Winter [122]. Within the limits of experimental error, the experi-
ments indicate that i takes on a universal value. The average value from 30
experiments on the PDMS system with various stoichiometry, chain length, and
concentration is i"0.214$0.017. Exponent i has a value of about 0.2 for all
the systems which we have studied so far. Colby et al. [38] reported a value of
0.24 for their polyester system. It seems to be insensitive to molecular detail. We
expect the dynamic critical exponent i to be related to the other critical
exponents. The frequency range of the above observations has to be explored
further.

6.6 Inhomogeneities

The crosslinking process should not be considered to be completely homogene-
ous. Several phenomena might cause inhomogeneities. On a molecular scale, we
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Fig. 25. Frequency dependence of moduli growth rate at the LST of crosslinking PDMS. Data from
Scanlan and Winter [58]

can expect that fluctuations in crosslink density grow by excluding mobile sol
molecules from regions of high crosslink density. This has been observed for
highly crosslinked polymers and might occur at early stages of crosslinking.

Wall effects might also lead to inhomogeneities on the molecular level. Two
possibilities can be envisioned: exclusion of large molecular clusters from the
layer adjacent to a solid boundary, or adhesion of the largest clusters to the wall
(while smaller molecules come and go near the wall).

These small-scale inhomogeneities would not be visible in rheological ex-
periments since they average out in a macroscopic approach. However, there are
inhomogeneities which do affect the macroscopic experiment. Most easily en-
countered is a temperature gradient which leads to gradients in the rate of
reaction. The hotter region of the sample reaches the gel point first and the entire
transition phenomenon gets smeared out. A clear gel point cannot be detected
macroscopically. We have encountered this phenomenon quite often and use the
purity of the self-similar behavior as an important criterion for a well-defined
experiment.

Another typical example of inhomogeneity in rheometry is the oxidation of
a polymer in a rotational rheometer in which a disk-shaped sample is held
between metal fixtures. The oxygen enters the sample through the free surface (at
the outer diameter) and diffuses radially inwards. The result is a radial gradient
in properties which changes with time. If the reaction with oxygen results in
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a solidification, then the outer edge of the sample solidifies much before the
inner regions, thus leading to an experiment-inherent inhomogeneity of the
sample.

7 Detection of the Liquid-Solid Transition

The gel point is reached when the largest molecular or supermolecular cluster
diverges to infinity [123]. This cannot be measured directly, but the conse-
quences are so dramatic that they can be seen in a wide range of phenomena.
Detection methods involve static light scattering on diverging clusters and
dynamic light scattering with diverging correlation time [124—128], dissolving
in a good solvent and extraction of a sol fraction [129], permeability [130],
nuclear magnetic resonance spectroscopy [131], differential scanning
calorimetry [132—134], and infrared [29, 135] and Raman spectroscopy
[136, 137]. Very sensitive indicators are rheological properties. Viscosity, first
normal stress difference coefficient, equilibrium compliance, and longest relax-
ation time diverge at the gel point and the distribution of relaxation modes
adopts a power law. These rheological features have been used extensively for
detecting the gel point, and the following discussion will focus on rheological
methods.

During our early experiments on chemical gels, when first observing the
intermediate state with the self-similar spectrum, Eq. 1—5, we simply called it
‘viscoelastic transition’. Then, numerous solvent extraction and swelling experi-
ments on crosslinking samples showed that the ‘viscoelastic transition’ marks
the transition from a completely soluble state to an insoluble state. The sol-gel
transition and the ‘viscoelastic transition’ were found to be indistinguishable
within the detection limit of our experiments. The most simple explanation for
this observation was that both phenomena coincide, and that Eqs. 1-1 and 1-5
are indeed expressions of the LST. Modeling calculations of Winter and Cham-
bon [6] also showed that Eq. 1-1 predicts an infinite viscosity (see Sect. 4) and
a zero equilibrium modulus. This is consistent with what one would expect for
a material at the gel point.

Physical solidification processes have no criterion for the gel point which
would be as decisive as the molecular weight divergence of the sol-gel transition.
LST measurements involve elaborate observations of flow to non-flow
transition, and they rely on subjective judgement. The broadening of the
spectrum into a power law distribution seems to coincide with such cessation of
flow observations. We have therefore suggested that it should be valid to
generalize from the behavior of chemical gels and identify LSTs of physical gels
also by the CW spectrum [67]. In this way we can clearly identify both the
approach to gelation and the transition of materials which otherwise would lack
a clear definition.
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7.1 Diverging Rheological Properties

The diverging rheological properties are an unambiguous sign of the approach-
ing gel point even if the measurement breaks down in its immediate vicinity (see
Fig. 5). Macosko [138] gave a well-balanced overview of the methods up to
1985. The most common rheological tests for detecting LST measure the
divergence of the steady shear viscosity [139—147] or the appearance of an
equilibrium modulus [143, 146—148]. The equilibrium modulus evades accurate
measurement near LST since its value is zero at LST and remains below the
detection limit for a considerable time. It appears in a stress relaxation experi-
ment as the long time limit of the relaxation function or in oscillatory strain as
the low frequency asymptote of G@.

Measurement of the diverging steady shear viscosity is an appealing experi-
ment because of its simplicity. Even the torque on a processing machine might
serve as an estimate of the diverging viscosity. It has, however, severe disadvan-
tages that need to be considered [149]:
1. Near LST, the relaxation times become very long, and steady shear flow

cannot be reached in the relatively short transient experiment. Large strains
are the consequence for most reported data.

2. At large strain, the liquid shows shear thinning in some poorly understood
fashion. Shearing causes breakage of the fragile network structure near LST,
which has been observed as an apparent delay in gelation.

3. LST is found by extrapolation. The actual experiment may also end prema-
turely some time before LST if the developing structure in the material is very
stiff and the rising stress overloads the rheometer.
The diverging viscosity, therefore, does not show the real gel point. The

transition may appear early because of torque overload or it may be delayed by
chain scission due to large strain. This apparent gel point, however, is still
important since it relates to processing applications in which either the machine
would clog or the newly formed network structure would break (or both).

7.2 Monotonously Changing Properties

The relaxation modulus evolves gradually during gelation. A set of data along
the lines of Fig. 2 gives a good estimate of where the gel point occurs. The
problem with it is that one cannot decide very well when exactly G(t) has
straightened out into a power law.

Dynamic mechanical properties also evolve gradually during the LST of
polymeric systems. The gel point is reached when tan d becomes independent of
frequency [58, 63, 65, 120, 149, 150] (see Eq. 4-12). Lines of tan d(t) at several
frequencies u

1
, u

2
, u

3
, u

4
, u

5
, etc. decay gradually and intersect at the gel point

(see Fig. 26). The method is very effective. The instant of gelation can be
measured as precisely as the accuracy of the rheometer permits — a significant
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advantage over extrapolation methods. An additional advantage is that the
strain is kept small and shear modification of the molecular structure is avoided.
The experiment not only tags the instant of gelation but also provides the value
of the relaxation exponent n (see Eq. 4-12).

Even before reaching the gel point, the converging lines can be extrapolated
towards the expected gel point. The LST can be anticipated. This is convenient
for preparing materials somewhere before the gel point but very close to it. The
cross-linking can be stopped at a defined distance before LST, (p

#
!p).

There are also some far-fetched proposals for the LST: a maximum in tan d
[151] or a maximum in GA [152] at LST. However, these expectations are not
consistent with the observed behavior. The GA maximum seems to occur much
beyond the gel point. It also has been proposed that the gel point may be
reached when the storage modulus equals the loss modulus, G@"GA [153, 154],
but this is contradicted by the observation that the G@!GA crossover depends
on the specific choice of frequency [154]. Obviously, the gel point cannot
depend on the probing frequency. Chambon and Winter [5, 6], however,
showed that there is one exception: for the special group of materials with
a relaxation exponent value n"0.5, the loss tangent becomes unity, tan d

#
"1,

and the G@!GA crossover coincides with the gel point. This shows that the
crossover G@"GA does not in general coincide with the LST.

7.3 Uniqueness of tan d Method

A self-similar relaxation spectrum with a negative exponent (-n) has the property
that tan d is independent of frequency. This is convenient for detecting the
instant of gelation. However, it is not evident that the claim can be reversed.
There might be other functions which result in a constant tan d. This will be
analyzed in the following.

A constant loss tangent, tan dOf (u), requires dynamic moduli

G@"h (u), GA"Ah(u)Ptan d"GA/G@"A"const. (7-1)

where h(u) may be an arbitrary function. The question is whether h(u) has to be
a power law h (u)Jun or whether other functions are permitted. If other
functions are permitted, then tan dOf (u) (for 1/j

0
(u(R ) is not a unique

criterion for the LST. For the following derivation, the short time behavior can
be neglected since it has no effect on the ensuing argument. For simplicity we
assume that the above condition applies over the entire frequency range,
0(u(R. The Kramers-Kronig relation

G@(u)"
2

n P
=

0

GA(x)

1!(x/u)2
dx

x
(7-2)
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can be evaluated for the above function

h(u)"
2

n P
=

0

Ah(x)

1!(x/u)2

dx

x
(7-3)

Substitution of y"x/u gives

1"A
2

n P
=

0

h (yu)

h (u)

1

1!y2
dy

y
(7-4)

Any function of yu with the factorization property

h(yu)"k (y)h(u), (7-5)

where k (y) may be an arbitrary function, is solution since it reduces the integral
to some constant which defines A:

1"
2A

n P
=

0

k (y)

1!y2

dy

y
(7-6)

A power law h(u)Jun satisfies this condition, Eq. 7-5, but any number of other
functions with that property might be invented. The tan d criterion, therefore,
might be not unique. However, no other material has yet been found which also
obeys tan d"constant in the terminal frequency region, and we suggest the
continued use of the tan d method for detecting LST until a counter example can
be found.

7.4 Determination of S and n

Dynamic mechanical data near the gel point allow easy determination of the
parameters of the critical gel, Eq. 1-1. Tan d, as shown in Fig. 26, gives the
relaxation exponent n

n"
2

n
tan~1A

GA
G@B (7-7)

GA/G@"(GA/G@)
#

is the value where the curves intersect in a single point. The
same data can be rearranged into

S"
G@(u)

uncos(nn/2)!(1!n)
(7-8)

S has to be evaluated at the gel point (with G@"G@
#
(u) at low frequencies). This

completely characterizes the critical gel. The critical gel behavior is valid above
a material characteristic time constant j

0
. The relation between S and n given by

Eq. 3-4 holds only at the LST.
The above two equations are generally valid for viscoelastic liquids and

solids. In this case, n and S would depend on frequency. In this sense, the above
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Fig. 26. Tan d of a crosslinking PBD (M
8
"18 000) as a function of reaction time [31]. Parameter is

the frequency u. The polymer is vulcanized at the pendant vinyl units with a bifunctional silane
crosslinker using a platinum compound as catalyst. The curves intersect at the gel point resulting in
tan dOf (u)

definitions are also valid in the vicinity of the gel point. However, n and S are
only independent of frequency at the gel point where self-similar relaxation
governs the rheological behavior.

8 Other Observations of Power Law Relaxation

Power law relaxation is no guarantee for a gel point. It should be noted that,
besides materials near LST, there exist materials which show the very simple
power law relaxation behavior over quite extended time windows. Such behav-
ior has been termed ‘self-similar’ or ‘scale invariant’ since it is the same at any
time scale of observation (within the given time window). Self-similar relaxation
has been associated with self-similar structures on the molecular and super-
molecular level and, for suspensions and emulsions, on particulate level. Such
self-similar relaxation is only found over a finite range of relaxation times,
i.e. between a lower and an upper cut-off, j

1
and j

6
. The exponent may

adopt negative or positive values, however, with different consequences and

222 H.H. Winter and M. Mours



limitations. A LST would require additional characteristics such as no upper
time limit for the self-similar region, stretching out of the spectrum at the
approach of the gel point and shrinking beyond the gel point, and different
curvature of the storage modulus before and after the gel point. These character-
istics have not been found in the following examples.

8.1 Self-Similar Relaxation with Negative Exponent Value

For negative exponent values, the symbol !n with n'0 will be used. The
self-similar spectrum has the form

H(j)"H
0A

j
j
0
B
~n

for j
1
(j(j

6
(8-1)

The dimensionless relaxation exponent n is allowed to take the values between
0 and 1. The front factor H

0
, with the dimension Pa and the characteristic time

j
0
, depends on the specific choice of material. Various values have been assigned

in the literature. The spectrum has only two independent parameters, since
several constants are lumped into (H

0
j~n
0

). For certain materials (the special
case of LST), the upper limit of the power law spectrum may diverge to infinity,
j
6
PR, without becoming inconsistent [18].
If the self-similar spectrum extends over a sufficiently wide time window,

approximate solutions for the relaxation modulus G(t) and the dynamic moduli
G@(u), GA(u) might be explored by neglecting the end effects

G(t)!G
%
"H

0P
=

0
A

j
j
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! (n)!(1!n)cos

nn
2

(j
0
u)n (8-3)

GA(u)"H
0
!(n)!(1!n) sin

nn
2

(j
0
u)n (8-4)

These solutions of the idealized problem are a good approximation for the
behavior within a time window j

1
(t(j

6
or the corresponding frequency

window 1/j
6
(u(1/j

1
. Truncation effects can be seen near the edges j

1
and

j
6
. j

0
is some material-specific reference time, which has to be specified in each

choice of material, and H
0
C(n)"G

0
is the corresponding modulus value.

The self-similar behavior is most obvious when it occurs in this form, i.e. if
the exponent is negative and the self-similar region is extensive. G(t), G@(u),
GA(u), and H(j) all have power law format and they have been used interchange-
ably in the literature. Less obvious is the self-similar behavior for positive
exponent values.
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8.2 Self-Similar Relaxation with Positive Exponent Value

For positive exponent values, the symbol m with m'0 is used. The spectrum
has the same format as in Eq. 8-1, H (j)"H

0
(j/j

0
)m, however, the positive

exponent results in a completely different behavior. One important difference is
that the upper limit of the spectrum, j

6
, has to be finite in order to avoid

divergence of the linear viscoelastic material functions. This prevents the use of
approximate solutions of the above type, Eqs. 8-2 to 8-4.

Spectra with a positive exponent may be explored for the ideal case of power
law relaxation over all times up to the longest relaxation time, j

.!9
:

H(j)"H
0A

j
j
.!9
B
m

for 0(j(j
.!9

(8-5)

j
.!9

is always finite and is chosen here as the characteristic time of the spectrum.
Even for this ideal spectrum, the relaxation modulus has to be evaluated
numerically. It does not have any simple form which could be recognized as
self-similar behavior. However, material functions can be evaluated for steady
shear flow

g
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j.!9
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8.3 Observations of Self-Similar Relaxation Spectra

A wide variety of polymeric materials exhibit self-similar relaxation behavior
with positive or negative relaxation exponents. Positive exponents are only
found with highly entangled chains if the chains are linear, flexible, and of
uniform length [61]; the power law spectrum here describes the relaxation
behavior in the entanglement and flow region.

Power law relaxation behavior is also expected (or has already been found)
for other critical systems. Even molten polymers with linear chains of high
molecular weight relax in a self-similar pattern if all chains are of uniform length
[61].

Self-similar spectra with negative exponents are found in several different
systems such as microgels [155], polymer blends and block copolymers [156] at
their critical point, or coagulating systems at the threshold. Some broadly
distributed polymers exhibit power law relaxation over an intermediate fre-
quency range [157]. This behavior, however, is not related to gelation, which
would require the power law to extend into the terminal zone, uP0. The
relaxation spectrum of a polymer is broadened as long range connectivity
develops (divergence of longest relaxation time), resulting in a power law
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behavior with negative exponent. Indications can also be seen in branched
polymers [158] and in solutions containing polymeric fractals (e.g. flexible
chain macromolecules of arbitrary self-similar connectivity [159] or natural
objects with non-integer dimension such as aggregates or percolation clusters
[160]).

Various types of power law relaxation have been observed experimentally or
predicted from models of molecular motion. Each of them is defined in its
specific time window and for specific molecular structure and composition.
Examples are dynamically induced glass transition [90, 161], phase separated
block copolymers [162, 163], polymer melts with highly entangled linear mol-
ecules of uniform length [61, 62], and many others. A comprehensive review on
power law relaxation has been recently given by Winter [164].

9 Applications

Processing of polymeric materials almost always involves a liquid-solid
transition, and applications are often limited by solid-liquid transitions. Prop-
erty changes are most dramatic near the transition. It is important to know
where the transition occurs, how extensive the property changes are, and how
fast they occur. Avoiding these transitions might often be the simplest solution,
but that is not always an option. Some materials have to be produced, pro-
cessed, or used near the gel point or up to the gel point. That is where
rheological experiments permit the exact determination of the instant of gelation
and the ‘distance’ from the gel point. We now can produce materials at control-
led distances from the gel point and also process materials near the gel point.
The critical gel properties serve as reference for expressing property changes in
the vicinity of the gel point.

9.1 Avoiding the Gel Point

Mixing and shaping operations in polymer processing require sufficient molecu-
lar mobility which vanishes when the motion slows down near the gel point.
Some materials only have small processing windows near the gel point (because
of their limited chemical stability above their melting point, for instance, or
because of their rapid crosslinking). Processing will become reasonably easy if
such a narrow processing window can be targeted. This requires sufficiently
accurate measurement of the material status relative to the location of the gel
point. Instead of processing in the material characteristic window, one may
consider shifting of the processing window by alteration of the material. This
again requires detailed knowledge of the transition behavior and accurate
methods for detecting the transition.
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9.2 Materials Near the Gel Point

Controlled sample preparation is difficult near the gel point where the rate of
property change is largest. Physical gelation usually proceeds too rapidly so that
the material near the gel point eludes the experiment or the application.
However, chemical gelation is most suitable for controlling the evolving net-
work structure. Several approaches have been explored in industrial applica-
tions and in research laboratories:
1. Polymerization chemistry was developed which allows the stopping of the

crosslinking reaction in the vicinity of the gel point [5, 29].
2. Thermal quenching of the crosslinking reaction: In an actual reactive extru-

sion process, the degree of crosslinking can be controlled by adjusting the
residence time at elevated temperature.

3. Off-balancing of stoichiometry by the right amount (depending on
crosslinking system) allows preparation of materials near the gel point
[66].

4. Crosslinking by controlled amounts of radiation. Examples are c-irradiated
polyethylenes [165] and UV-irradiated polyurethane [166]. Best contestants
are endothermic reactions which require energy for the formation of each
chemical bond and which cease crosslinking when the energy supply is turned
off. The extent of reaction directly depends on the amount of absorbed
energy. Radiation can be used to enter energy into transparent materials. The
radiation intensity decreases along the path of the radiation in the materials.
This potentially leads to samples with a large gradient in extent of reaction,
the exposed side of the sample being further crosslinked than the backside.
Not suitable for preparing polymers near the gel point are chemical reactions
in which radiation only initiates the crosslinking reaction so that it continues
even after the radiation has been turned off.

9.3 Damping Materials

Critical gels have a damping plateau instead of the commonly observed damp-
ing peak. The loss tangent, Eq. 4-12, is uniformly high over a wide frequency
range, 0(u(1/j

0
. At higher frequencies, u'1/j

0
, the usual glassy behavior

sets in, or, if the critical gels are made from precursors of high molecular weight,
the entanglement behavior dominates before glassy modes take over. The
damping behavior is independent of temperature [nOf (¹)], which seems to be
unique among polymeric materials.

The damping material does not have to be a critical gel. Many applications
do not require extra low damping frequencies. The lowest vibration damping
frequency u

.*/
determines the longest relaxation time, j

.!9
. A suitable damping

material would be crosslinked beyond the gel point, with a j
.!9

of about
1/u

.*/
.
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9.4 Pressure-Sensitive Adhesives

Polymers at the gel point are extremely powerful adhesives. They combine the
surface-wetting property of liquids with the cohensive strength of solids. The
mechanical strength of an adhesive bond in composite materials (with crosslink-
ing matrix) develops during the sol-gel transition, and the strength of pressure-
sensitive adhesives can be tailored through their degree of crosslinking. While the
mechanical strength against adhesive failure is maximum at the gel point, the
mechanical strength against cohesive failure is still relatively low since the
polymer at the gel point is only slightly crosslinked. As the crosslink density is
increased beyond the gel point, the strength of the network increases (stronger
cohesion) while the adhesive strength decreases. The distance of a polymer from
the gel point therefore is expected to define the ratio of adhesive to cohesive
strength. This general behavior was confirmed by Zosel [167] in his study of
tack and peel behavior of radiation-crosslinked PDMS. He found the maximum
tack (corresponding to adhesive strength) slightly after the gel point.

The knowledge of gelation leads to an unconventional but systematic
approach to the development of pressure-sensitive adhesives. Based on the fact
that gelation is a critical phenomenon, we hypothesize that there exists a univer-
sal ‘law’ which relates the adhesive to the cohesive properties at the gel point and
in its vicinity. More research is needed for verifying this hypothesis and explor-
ing its limits. For that purpose, polymer gels with well-defined chemical com-
position should be prepared at known distance from the gel point and their
adhesive and rheological properties measured. The main parameters are: solid
surface properties (chemical composition, homogeneity, regularity, roughness,
curvature), chemical composition, wetting (phase diagram), and layer thickness.

The molecular weight is one of the most important parameters of polymer
adhesion. Molecules of low molecular weight are able to wet a surface without
adhering there for a longer period of time. There exists a chemistry-specific
molecular weight beyond which molecules adhere to a surface. The transition
from non-adhering to adhering may be described as a critical phenomenon. This
same phenomenon has important implications for gelation near a surface: The
molecular weight increases during gelation, and, at a certain extent of crosslink-
ing, the largest cluster exceeds the critical molecular weight and adheres to the
surface. This may have interesting consequences which should be explored
further. The largest clusters may separate from the bulk, and the gel point will
then be postponed in a very thin film while a solid layer is formed near the
surface. Beyond the gel point, large molecules will not be able to move to the
surface and the system will gradually feel ‘dry’, i.e. will not be able to stick to
a surface.

Molecular orientation at the surface may also be important. A molecule
orients planarly when deposited on a solid surface. Molecular strands prefer to
be parallel to the surface; their probability of being oriented normal to the
surface is very low. Several mechanisms can cause this orientation: (1) Surface-
active sites may favor entire chain segments to interact with the surface. (2) The
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Fig. 27. Schematic of molten polymer flow during injection molding into a cold mold

orientation is generated during the drying of the solution at the surface. A vol-
ume element of solution at the surface may initially contain isotropic polymer
chains. Extraction of the solvent results in a shrinkage of the volume element
into a thin film at the surface. Motion of the chain segments during this
‘deformation’ results in planar orientation.

9.5 Processing Near the Physical Gel Point

Many polymers solidify into a semi-crystalline morphology. Their crystalliza-
tion process, driven by thermodynamic forces, is hindered due to entanglements
of the macromolecules, and the crystallization kinetics is restricted by the
polymer’s molecular diffusion. Therefore, crystalline lamellae and amorphous
regions coexist in semi-crystalline polymers. The formation of crystals during
the crystallization process results in a decrease of molecular mobility, since the
crystalline regions act as crosslinks which connect the molecules into a sample
spanning network.

Injection molding of semi-crystalline polymers is an example of a process
which is dominated by crystallization. Particularly the rate of crystallization is
important. During injection of the molten polymer into the mold, a layer of
polymer gets deposited at the cold walls of the mold where it starts solidifying
while exposed to high shear stress due to ongoing injection (Fig. 27). This is an
important part of the process, since the wall region later forms the surface of the
manufactured product. A high shear stress during this crystallization might
rupture the already solidified surface layers, resulting in surface defects (Y.G.
Lin, personal communication). This could be avoided if the crystallization
behavior were known together with its effect on the developing strength of the
material. The polymer could to be modified to adjust its crystallization behavior
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or a different polymer could be used or developed. A suitable tool to monitor the
time dependence of crystallization processes and thus to select the best material
and processing conditions is rheology. The characteristic crystallization time for
each material can be tailored to the given molding circumstances.

9.6 Processing Near the Chemical Gel Point

Novel materials can be produced by crosslinking a polymer while shearing it at
the same time. This process is known as dynamic vulcanization and is already
used in the manufacture of certain rubbers and elastomers. At low degrees of
crosslinking, the molecular structure is still very soft, so that the rate of
molecular breaking can be of the same order as the rate of forming new chemical
bonds. The result is a highly branched molecular structure with molecules of
broadly distributed size. The materials have advantageous properties for ap-
plications as adhesives, damping materials with extremely broad damping
maxima, toner for copy machines, superabsorbers, and sealants. The process
gives access to materials with a wide range of properties through well-defined
processing but to uniform chemical composition (mono-material, easy to recycle).

10 Conclusions

Polymers during their liquid-solid transitions develop a universal rheological
behavior which is distinct from that of liquids or solids. It seems that this is
a new, general phenomenon of nature. The phenomenological picture of this
relaxation pattern is fairly complete. This allows the direct measurement of the
liquid-solid transition during the manufacturing of gels and suggests a frame-
work for presenting experimental data on gels. However, much too little is
known yet about the molecular origin of the observed phenomena. Such
molecular understanding would be desirable from a fundamental point of view,
and it would be good to have when designing gels for specific applications.

We have further evidence that, in the absence of competing phase transitions,
the material at the liquid-solid transition exhibits self-similar rheological behav-
ior. The self-similarity expresses itself in power law relaxation and retardation
spectra in the terminal zone. This very distinct relaxation pattern was first
detected for chemically gelling systems. For these systems, a three-dimensional
network structure is built by permanently connecting molecules through
covalent bonds, and the longest relaxation time diverges at the gel point.
However, the power law relaxation behavior seems to also govern physical
gelation as long as the gel number is large, N

'
<1, i.e. the lifetime of the

junctions (which are reversible in contrast to chemical gelation) is long com-
pared to the experimental observation time. This can be clearly seen at early
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stages of crystallization where a molecular network is formed with crystalline
junctions. Furthermore, other physical mechanisms which lead to increasing
correlation length seem to result in the same general relaxation patterns near the
liquid/solid transition point.

The dynamic properties depend strongly on the material composition and
structure. This is not included in current theories, which seem much too ideal in
view of the complexity of the experimentally found relaxation patterns. Experi-
mental studies involving concurrent determination of the static exponents,
d
&
and q, and the dynamic exponent, n, are required to find limiting situations to

which one of the theories might apply.
The criticality of the liquid-solid transition does not necessarily imply

universality for all investigated properties. Prefactors of different properties
always depend on the details of the underlying structure, e.g. the critical gel
stiffness is seen to vary by five orders of magnitude. Scaling of different static
properties around a critical point is only universal if the structure growth
process belongs to the same class (universality class). Dynamic scaling proper-
ties such as the power law relaxation exponent are much more complex and not
expected to be universal. Values of n as reported in this study, 0.19(n(0.92,
have been established over almost the entire possible range (0(n(1).
Stoichiometry, molecular weight, and concentration were all shown to have an
impact on the critical gel properties. These critical gel properties are also
coupled for the polymers studied here.

From a practical point of view, it is advantageous that critical gel properties
depend on molecular parameters. It allows us to prepare materials near the gel
point with a wide range of properties for applications such as adhesives,
absorbents, vibration dampers, sealants, membranes, and others. By proper
molecular design, it will be possible to tailor network structures, relaxation
character, and the stiffness of gels to one’s requirements.
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