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A method is proposed to describe the processing history in

extrusion dies and its influence on the state of the polymer after
processing. The approach differs from conventional processing
analysis, which uses the shear viscosity function to calculate
pressure drop vs flow rate relations. The approach also differs
from heuristic analysis which tries to find empirical correla-
tions between rheological observations and processing be-
havior. The method is applied to the flow in annular extrusion
dies. An integral constitutive equation is chosen to calculate
the flow and to describe the flow history at the die exit as
memorized. In the analysis, the kinematics are locally approx-
imated by isothermal steady shear flow. The velocity and the
velocity gradient are used to determine the Finger strain ten-
sor, the path lines, and the residence times of the deforming
material elements. Measures of the state of the polymer at the
die exit are chosen to be the stress ratio N,/27,, and the free
recovery. The free recovery calculations presume that the ex-
trudate is chopped into small volumes of homogeneous flow
history. The results of the calculations show the polymer very
sensitively reacts to small changes of the die geometry. Impor-
tant applications of this analysis are film blowing and blow
molding, where the extensional behavior during the blowing
process outside the die depends greatly on the preceding shap-
ing process inside the die.

INTRODUCTION

Although an enormous amount of literature has been

devoted to the study of polymer processing (see for
instance recent text books (1-3)} there still exists a need
for a better qualitative and quantitative understanding
of the relation between processing history and the end
use properties of polymeric products. This understand-
ing can be gained by studying the processing history of
individual material elements in the processing equip-
ment, e.g., in an extruder or an injection molding
machine. Along its path through the machine, the mate-
rial elements are subjected to large strains and to chang-
ing temperatures. The final polymeric product then
consists of material elements with a variety of individual
processing histories. The polymer, therefore, might be
very inhomogeneous with respect to its local mechanical
or optical properties. The integral over this distribution
of properties determines the overall performance of the
polymeric product.
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The goal of the following study is a description of the
state of a polymer when extruded from an annular extru-
sion die. The annular geometry has been chosen be-
cause it is common for various extrusion dies (pipe extru-
sion, flm blowing, blow molding). It is still simple
enough to be tractable for a detailed flow analysis and for
the development of new analytical methods. The annu-
lar geometry makes it possible to generate flow histories
with shear and biaxial extension superimposed (by
changing the radius and the gap width along the an-
nulus). The study is concerned with polymers in the
molten state, only.

RHEOLOGICAL CONSTITUTIVE EQUATIONS

During the last 30 years a large number of possible
constitutive equations have been proposed and tested
experimentally; see, for instance, (4). Atleast one group
of these equations seems to be sufficiently accurate in
describing the rheological behavior of molten polymers,

POLYMER ENGINEERING AND SCIENCE, APRIL, 1981, Yol. 21, No. 6



Processing History in Extrusion Dies and Its Influence on the State of the Polymer Extrudate at the Die Exit

and it is still fairly simple to use in flow calculations. This
is the rubber-like liquid equation of Lodge (5) as
modified by Kaye (6) and Bernstein, Kearsley and Zapas

(7):
ga(t) = — pl + f‘ m(t', ) C7'(¢', pdt’ (1)

where g(t) is the stress at time ¢, p the isotropic
pressure contribution, 1 the unit tensor, m(t',t) the
memory functional, and C~'(¢', t) the relative Finger
strain tensor between time ¢’ and ¢.

The material behavior is contained in the memory
functional m(t’, t) which not only depends on the time
difference t — t' (as the rubber-like liquid (5) does), but
also on the time dependent invariants of the strain ten-
sor C™. Various types of memory functionals have been
suggested in the literature. A very successful form which
has been proposed by several authors (8-14) uses a prod-
uct of two separate functions (or functionals) for the
strain dependence and for the time dependence of the
memory functional

m(t', t) = h(t', t) m(t — t') 2

The strain functional h depends on the three invariants
I(¢',9), I1(¢',¢t), and I1I(t',t) of the Finger strain tensor.
The influence of the third invariant will be neglected by
assuming constant density. The memory function m(t ~
t') of linear viscoelasticity (see (21)) depends only on the
time difference t — t'. It may be described by a discrete
relaxation spectrum
v

mt-t)= 3 —()‘;—:-e;(p(— t :\:t' )

i=1

3)

where G; are the relaxation moduli and A(T) the tem-
perature dependent relaxation times.

The constitutive equation, Eq 1 with Eqs 2 and 3, has
been tested extensively by Wagner and Laun (15-19)
and was found to describe all phenomena in shear and
uniaxial extension of a low density polymer sample
(called “melt I”). This seems to be the most comprehen-
sive test of a constitutive equation ever undertaken.

Wagner (18) was able to find a single strain functional
h for both shear and uniaxial extension. It is of the form

h(t',t) = exp [-nM1 — &) II(t',t) + al(t',t)—3 (4)

At small strains, the value of h reduces to unity while at
large strains h < L

In most applications, the strain invariants I, II are
increasing functions of the time difference t — t'. Coun-
terexamples are recovery experiments (e.g., free re-
covery and extrudate swell). In these cases the
minimum value of h

h* = Min h(t".t) (5)

=t

should be used in the memory functional (irreversibility
assumption of Wagner (18, 19)).

The separation of strain and time dependence in the
memory functional has been tested by Laun (16) and by
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Osaki (20). In their experiments they observed the
relaxation of the first normal stress difference and the
shear stress in a step shear strain experiment. The exper-
iments support the factorization in Eq 2.

In the following this constitutive equation will be
applied to the analysis of the flow of molten polymers in
extrusion dies. In die flow, the material elements are
subjected to biaxial extension superimposed on shear
flow. The application will actually go beyond the tested
region of the constitutive equation: In the rheological
experiments, the polymer can only be subjected to un-
idirectional shear and separately to uniaxial extension.
The analysis has been undertaken in spite of these
limitations. The reasons are the following:

a) The constitutive equation is applicable to arbitrary
strains (shear and extension) when applied in the linear
viscoelastic region. Therefore, the achieved results
should be reasonably accurate in the limit of slow flow.

b) The large strain behavior of the melt might be
described reasonably well by Eq 1. The superposition of
shear and extension should be governed by similar strain
dependent phenomena as the pure rheometrical exper-
iments in shear or extension. However, there are no
rheometers available to test the constitutive equations
in this type of flow.

¢) The methods developed in this analysis will be
available for a more sophisticated analysis, when a more
detailed rheological constitutive equation (applicable to
complex flows of processing) has emerged.

CALCULATION OF VELOCITY AND STRESS FOR
MEMORY INTEGRAL CONSTITUTIVE
EQUATIONS

Integral constitutive equations have been used very
little in calculating velocity profiles or stress distri-
butiéns of flowing molten polymers. Marrucci, et al. (22)
suggested that the integral equation be rewritten as a
sum of differential equations (which, of course, is not
possible for each type of integral equation) and that
these differential equations be solved by established
means. The constitutive equation suggested by Mar-
rucci, et al. seems to give good agreement between
experimental observations and theoretical predictions
in shear and uniaxial extension. However, it appears to
be more difficult to use than Eq 1.

From the point of view of numerical analysis, differen-
tial .constitutive equations are appealing because they
avoid the complexity of memory integrals. However, in
these models the viscoelastic properties of the fluid
enter the calculations through terms having high order
(like 4th order) derivatives of the velocity. This disad-
vantage of the approach has led several investigators to
develop methods for memory integrals, since they do
not demand a high order of differentiability of the veloc-
ity field.

Bernstein and Malkus (23) suggest a variational
method using a KBKZ constitutive equation (6, 7) witha
single time constant. The variational principle is applied
to finite elements of fluid. The numerical integration
scheme in space and time tracks each spatial integration
point from element to element. If, during the course of
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tracking of a given particle, the exponential function
exp(—(t — t')/A) becomes sufficiently small, the remain-
ing contribution to the integral may be disregarded, and
tracking of that particle terminated. The solution proce-
dure has been applied to flow in the entry region of the
contraction of a channel with slit cross-section.

Viriyayuthakorn and Caswell (24) developed a finite
element method where they approximate the memory
integral of the constitutive equation by a Laguerre nu-
merical formula. The kinematical problem is the compu-
tation of the displacement vector from every node of the
numerical grid to the Laguerre points upstream along
particle paths. The solution method is restricted to the
calculation of non-linear effects as body forces. The
method is illustrated with die entry flow in which the
fluid is forced through a four-to-one axisymmetric con-
traction.

Petrie (25) and Wagner (26) used a rheological con-
stitutive equation to predict bubble shapes in the film
blowing process. Both used the same rheological con-
stitutive equation with a single time constant. Petrie
preferred the differential version (Maxwell model with
contravariant time derivative) while Wagner used the
integral formulation (rubberlike liquid with one time
constant). Wagner additionally incorporated tempera-
ture changes during the biaxial extension in the bubble.

The free recovery at the exit of extrusion dies has been
calculated by Junk (27) and Wortberg (28), using the
superposition principle of linear viscoelasticity. This
principle, however, is not applicable to flow in extrusion
dies, because the fluid elements are subjected to large
strains and the stress-strain relation is non linear. The
stress contributions of shear and of extension should not
be calculated separately and then added afterwards. The
following analysis is quite different from these studies. It
will lead to results which are applicable to extrusion at
reasonable flow rates.

CALCULATION OF FLOW HISTORY IN
ANNULAR EXTRUSION DIES T

The annular flow geometry with varying diameter and
cross-section is quite common to various extrusion dies.
It will be investigated in the following. Note that annular
flow includes pipe flow and slit flow as limiting cases.

Integral constitutive equations are most suitable for
calculating the stress in a flow of known kinematics. The
kinematics in extrusion dies can be calculated by means
of very well established numerical solution procedures
assuming locally steady shear flow, see Winter (29). The
kinematics then will be used to track the fluid elements
along their paths in the extrusion die. The deformational
(and temperature) history along each path determines
the state of the polymer at the exit of the die.

Kinematics of Annular Flow

The simplifying assumptions for calculating the’
kinematics in annular die flow are the following:

a) constant temperature throughout the flowing
polymer;

b) no pressure dependence of the rheological proper-
ties;
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c) constant density;

d) lubrication approximation;

e) shear stress of steady shear flow (locally).

The coordinate system of the following analysis is
shown in Fig. 1. Annular flow will be described in cylin-
drical coordinates (x, r) while the strain history of a fluid
element is most easily described in cartesian coordinates
(x, y, 2).

The assumption of steady shear flow reduces the
x-component of the stress equation of motion into

'%Px“ = _::‘ ‘a_‘ Trr) (6)
where the shear stress 7, is determined by the local
shear rate

. v,
V=5 M

and the rheological constitutive equation, Eq I, as
applied to steady shear flow:

. A Gy
m=? % 3 hueaamr O

The material parameters f; and n; describe the large
strain behavior. Their values have been determined by
Laun (16) for a LDPE melt.

The volume flow rate remains constant with x, since
the density is assumed to be constant throughout the
flow. The average velocity

- v 2 ra
R CEr I S L S

then adjusts to the change in cross-sectional area along
the die.

The velocity profiles are calculated numerically. Typ-
ical velocity profiles are shown in Fig. 2.

axis of die

flow channel

Fig. 1. Coordinate system x, r for annular flow and coordinate
system x, y, z for calculating the components of the Finger
tensor.
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Fig. 2. Velocity distribution at entrance and at exit of annular
dies of Fig. 4 (in the Appendix). The flow is assumed to be steady
shear flow. Data: M = 210 kg/h, T = 18(PC, rheological proper-
ties of LDPE (Laun (17)).

The assumption of locally steady shear flow has been
found to be valid when calculating the flow rate as a
function of the local pressure gradient 3p/dx. Examples
are given by Player (30), Wortberg (28), and Junk (27)
who approximate an annular flow channel by a sequence
of many cylindrical annuli. Brauer (31) and Geiger (32)
found that velocity profiles in contained flow develop
orders of magnitudes faster than the stress. The kinema-
tics of contained flow seem to be insensitive to the small
changes in the stress distribution. The stress of steady
shear flow as obtained in a long annulus of constant
cross-section can therefore be used to calculate velocity
distributions of sufficient accuracy, even if the cross-
section of the annulus changes in the flow direction.

The kinematics will be used for calculating the defor-
mation of a fluid element along its path and for calculat-
ing the corresponding stress tensor.

Components of the Relative Deformation Tensor

A fluid element is sheared and stretched when flowing
through an extrusion die, see Fig. 3. The volume is
assumed to stay constant. The deformation is described
by three material vectors g which form an orthonormal
system at time t. At previous times t’ <, the material
vectors form‘a nonorthonormal coordinate system ¢
whose metric is the Cauchy-Green tensor C. Its inverse
will be used to cilculate the stress at time ¢, see Eq 1.
The orthonormal system g, is chosen to be the system x,
y, z of Fig. 1.
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Fig. 3. Deformation t' — t of @ material element. Definition of
the material vectors ¢, = ¢ (t) and ¢'; = ¢ (') and of the relative
shear strain v.

The components of the Finger tensor are

a + y?/8: — v5: 0

c™ = ( —v8, U8 O (10
0 0 1/82
where
S, = elle, (11)
8, - e, cosvyle, : (12)
8, = e;le, (13)
are the dilatations in the three directions with
5.8,8,=1 (14)

at constant density. The shear angle v is just the integral
of the shear rates along a stream line ( = const)from ¢ to
t' ¢
¥#) = [3( e 90 = 0 (15)

Note that Eq 10 does not describe the most general
kind of deformation at constant volume, where the
superposition of shear and extension would be arbi-
trarily. In Eq 10 the shear and the extension are chosen
such that the shear direction and the normal to the shear
plane are principal directions of the extensional flow
component. The shear plane (x — z — plane) changes its
area due to the extensional component.

Tracking of a Fluid Element

The radial position of a fluid element is prescribed by
its value  of the stream function, which stays constant
along the paths in the annulus. The stream function
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[r v(r) rdr
¥lr)y = G
f v(r) rdr
ri
- (_r_,__ir%_ [n oi(r) rdr  (16)

is equal to zero at the inner wall and equal to 1 at the
outer wall of the annulus.

The axial position x of a fluid element corresponds to
time ¢t while position x’ corresponds to ¢’

w - e = [ S a7

The integration has to be carried out at constant .
The shear strain y(t', ) is evaluated by integrating Eq
15 along the stream line.
The stretch in flow direction is given by the change of
velocity along a stream line: .
! tl |’l)
8 t', t, = e.l‘ = v.r( ’ 18
A== sew W
The stretch in circumferential direction corresponds toa
change of radial position of the stream line

8,(t', t.) = el _ r(t’, W)
These strain variables will be calculated from the
kinematics of the flow in the extrusion die. They will be
put into the Finger tensor (Eq 10) and the strain func-
tional h, Eq 4.

RESULTS OF THE CALCULATION

In the calculations, the temperature will be assumed
to be constant. The rheological constitutive equation
will be applied to study flow which is a superposition of
shear and biaxial extension. The material parameters in
the constitutive equation are the ones of low density PE
(“Melt I”) as measured by Laun (16).

The annular flow geometry with varying diameter and
cross-section has been applied to the three die geome-
tries of Fig. 4 and to an annulus of constant cross section.
These three geometries are chosen to demonstrate the
magnitude of the phenomena. The analysis, of course, is
also applicable to other annuli. The mass flow rate M=

(19)

0302 9302 — 0302 0302
] 300 @ 0300 | 9300 #300
detail
3
0262
extrusion die
‘ #1320 030 #00
70 70 70
die 1, die 2, de 3, de 4,
detail detod detail detol

Fig. 4. Sketch of three annular die geometries to be investigated.
The inlet geometry (130 mm to 170 mm), the exit geometry (300
mm to 302 mm), and the length are the same for all three dies. For
comparison, a fourth geometry will be used: An annulus of cross
.-section (300 mm to 302 mm) which is constant throughout. It

~ will be called “die 4.
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210 kg/h and the temperature T = 180°C is chosen to be
the same in all the following examples.

Stress Ratio N,/27,, at Die Exit

The stress at the exit of the extrusion die is a measure
of the memorized flow history of processing in the die.
We therefore calculate the normal stress difference dis-
tribution N,(§) = 0 — 0, and the shear stress dis-
tribution 7,2(¢) = 7, from the kinematics as calculated
above. In steady shear flow at small shear rates, the ratio
of these stresses has been predicted to be equal to the
recoverable shear strain (33)

v, = ,lim (20

> 2112

Laun (34) has found experimentally that this relation also
holds for steady shear flow outside the linear viscoelastic
region.

* Flow in extrusion dies cannot be considered to be
steady shear flow, even if the kinematics are locally very
similar to the kinematics of steady shear flow. In Fig. 5
the stress ratio as calculated for the three extrusion dies
is compared with the corresponding stress ratio at the
exit of “die 4 which is an annulus of constant cross-

4,0
die 1 I
die 2 )
die 3 °
die 4 o
3.5 i
30
il
2,5
20 , - . .
05 06 07 08 09 1.0
r-r
la=Ti

Fig. 5. Stress ratio at exit of extrusion dies of Fig. 4. The points
are calculated numerically using rheological data of Laun (16)
with M = 210 kg/h, T = 180°C.
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section throughout. The difference is very pronounced:
The largest stress ratios are found in “die 1” and “die 2.”
The stress ratio in “die 2” is much smaller already than in
the annulus of constant cross section (“die 4”). Tapered
sections seem to increase the stress ratio significantly
(due to the extensional flow component), while shear
flow reduces the stress ratio to a smaller value.

Close to the wall, the stress ratios approach the same
value for all four dies, since the flow approaches steady
shear flow at the wall (a result which is true for any
steady contained flow, when the non-slip condition
applies (35). There is, however, only a small fraction of
the extruded polymer which originates from alayer near
the walls. The largest fraction of the polymer passes
through the middle of the annulus, where the differ-
ences between the four dies are most pronounced. Fig-
ure 5 shows how small changes in die geometry affect the
state of the extruded polymer.

The stress ratios of Fig. 5 have been calculated by
numerical integration of Eq I using Eqs 2, 3, and 10 and
the numerically determined velocity distribution in the
entire flow channel of the dies.

Due to the fading memory of the polymer as de-
scribed in Eq 2, the integration does not have to be
performed in the complete range [- < ¢’ <t]. There is
only a finite time ¢’ in the past and a corresponding
position x* in the die, beyond which the upstream strain
history of a fluid element has no influence any more. The
memory to previous deformations has faded due tolarge
residence times or due to large new strains closer to the
die exit. When designing an extrusion die, one should
know the extent of influential strain history in the die.
The extrusion die then can be designed to impose the
desired strain history onto the flowing polymer.

It should be mentioned here that the present calcula-
tions are not applicable to flows with a memory which
reaches upstream into spider sections or streaker plates.
The calculations, however, can tell whether the strains
in the annular low channel are sufficiently large to erase
the memory of such undesired upstream flow histories.

Figures 6 and 7 show values of the stress ratio as
obtained from integrations from ¢’ = t'(x*) in the die to
t’ = 0 at the die exit. The value x* describes an upstream
distance from the die exit. With increasing x* the mem-
ory integral adopts a constant value at x* = I, and the
integration can be terminated. The magnitude of In
depends on the strain history along the stream lines (and
the rheological properties of the polymer, of course).
Close to the middle of gap, the fluid elements move the
fastest while subjected to the smallest strains (extension
only); in that region, the memorized flow history may
reach very far upstream and may give rise to undesired
properties of the extrudate. In Fig. 6, a stream line near
the middle has been investigated to show the positive
influence of tapered sections. The length 1, of the
influential strain history is much shorter in the first three
dies than in “die 4" of constant cross-section.

Free Recovery at the Die Exit
A possible experimental measure of recoverable
strain is extrudate swell, i.e., the increase in cross-
sectional area of the polymer stream when leaving the
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Fig. 6. Stress ratio (calculated points) as determined by numeri-
cal integration from x = 0 to x = x*. Fluid element near the
middle of the annulus. For data see Figs. 4 and 5.
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Fig. 7. Axial development of stress ratio (calculated points).
Fluid element near the wall of the annulus.

extrusion die. This area-change is observed with time
and related to the strain history in the die. Extrudate
swell, however, is an integral measure which smoothes
out inhomogeneities within each cross section. It cannot
distinguish between the recoverable strain of an ele-
ment near the surface of the extrudate and an element in
the middle. In the following we therefore propose a
hypothetical experiment which gives detailed insight in
the effects of the inhomogeneous strain history across
the extrusion die.
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It is assumed that the extrudate at the die exit is
instantaneously chopped into small elements of
homogeneous strain history. The isothermal free re-
covery of these elements is observed in a computer
“experiment.” The distribution of free recovery across
the annular gap will give a detailed insight on the flow
process in extrusion dies. Changes in die geometry or
differences in the rheological properties can be analyzed
in detail.

Each polymer element in the extrusion die undergoes
shear and biaxial extension. At time t = 0 the stress is
made isotropic. We require the instantaneous and the
delaved recovery at times t = 0. The equation of the
stress becomes

[} ¢
e =0=-p1+ [ [mCldt’ + [ [mcdr
- ° @1)
where [mC~"]y = memorized strain history of polymer
element along the stream line in the extrusion die and
[m_C_I“‘], = memorized strain history during free re-
covery at constant temperature. The strain is described
with an orthonormal base in state t’ = ¢. Thisis different
from the analysis of Lodge, et al. (33, 36) who used an
orthonormal base in the state at ¢ = 0 (corresponding to
the die exit) and determined the equivalent rubbery
response.
The equation of the stress can be broken up into
components

0= U_ow + fo‘]m(C;}, - Cyhdr (22a)

0= U_o,, + j:]m(C;,} - C:Hdt’ (22b)

0=Ui+j:]mc;,}dt’ 22¢)

and solved together with Eq 10 for 8.(0,t,), 6,(0,¢,¢),
8,(0,t,¥), and v, = ¥(0,t,). The recovery is afunction of
time (¢t > 0) and of the stream function .

The system of equations has been solved numerically.
Fort = 0*, there is a small spontaneous recovery, due to
the discrete choice of relaxation spectrum. This spon-
taneous recovery, however, was found easy to calculate
by using alinearly changing strain (ramp) between t' = 0
and t' = 10~%. ¢’ = O corresponds to the beginning of the
free recovery “experiment.”

The value of tis increased stepwise until the complete
recovery is achieved after about 100 s. Results of the
calculations are shown in Fig. 8. The annulus of constant
cross section (“die 4”) exhibits the smallest recovery. It
is the same in both directions; this is a result which
agrees with a similar calculation by Lodge (33). For the
other dies, the relative increase in thickness 8" is larger
than the swelling in circumferential direction 87!, which
(vivou]d correspond to a diameter increase of the extru-

ate. :

The distribution of recovery across the exit of the dies
is shown in Fig. 9. Close to the wall, the recovery
approaches the value corresponding to steady shear
flow. The largest differences are found in the middle of
the annulus. Note that at (r—r)/(r,—r;) = 0.5 the fluid
elements can pass “die 4” without being deformed; the
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Fig. 8. Recovery of fluid elements at the exit of the annular dies

of Fig. 4 as compared to the recoil at the exit of an annulus of

constant cross section throughout (“die 47). The points are
calculated using rheological data of Laun (16).

corresponding recovery values are unity (no “re-
covery”).

Corresponding recovery angles y, are given in Fig. 10
and Fig. 11. The differences between the dies are less
pronounced with respect to y than in the dilational
measurements.

CONCLUSIONS

The state of the polymer at the exit of an extrusion die
depends on the properties of the polymer and on the
processing history. Small differences in die geometry
result in large differences of the stress ratio Ni/2t,, and
the possible free recovery at the die exit. The memory of
the polymer on the upstream processing history is
erased by large strains in the flow. The new strain his-
tory near the die exit determines the state of the extru-
date.

The influence of die geometry is demonstrated on
three diverging annular dies and one annulus of constant
cross section. In an annulus of constant cross section, the
polymer elements are subjected to shear only. The
magnitude of the shear strain depends on the radial
position: for a path near the wall, the shear strain is very
large, while the fluid element in the middle of the
annulus flows along without being deformed at all. In a
diverging or converging _annulus, the polymer elements
are additionally subjected to biaxial extension. This ad-
ditional deformation does not only affect the polymer
elements which move close to the wall, but also the ones
in the middle of the annulus. Opening and narrowing of
the die channel are important features of die design,
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Fig. 9. Recovery of fluid elements after 100s. The points are
calculated.

because they make it possible to erase the memory on
upstream processing history, even if the material ele-
ment flows in the middle of the channel.

The three dies of varying cross section are purposely
chosen to be very similar to each other: same entrance
cross section, same exit cross section, same length. Asa
consequence, the same distribution of extensional
strains has been imposed on the polymer elements
across the three annuli. The only differences are the
time scale of the extension and the magnitude of the
shear strains. Still, the differences in the state at the die
exits are very large. In actual die design, the choice of
die geometries would be less restricted and would result
in an even larger spectrum of achievable states. The
proposed method of analysis will be a tool to choose the
appropriate die geometry.
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NOMENCLATURE
Cit't) = relative Finger strain tensor, —
d = diameter of annulus, m
e = embedded vectors
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fi = rheological material parameter, see Eq 8, Ref.
(16)

G = relaxati. » moduli of linear viscoelasticity, Pa

h = strair: unctional, —, see Eq 2

l = length of die, m

m(t’',t) = memory functional, Pa s, see Eq. 2

m(t—t*) =-memory function of linear viscoelasticity, Pa
-1
s’

M~ =mass flow rate, kg/h

n = rheological parameter of strain functional h, —,
see Eq 4

N = number of relaxation times of discrete relaxa-

tion spectrum, —
= first normal stress difference, Pa, 7, — 7,
= pressure, Pa
coordinate, m
time, s
velocity, m/s -
volume flow rate, m%/s
coordinates, m
. = rheological material parameter, —, see Eq 4
shear strain, —
shear rate, s™%, see Eq 7
stretch in flow direction, —
stretch in radial direction, —
stretch in circumferential direction, —
relaxation time of linear viscoelasticity, s
angular frequency, s™!
stream function, —, see Eq 16
stress, Pa
extra stress, Pa
invariants of Finger strain tensor
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