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The steady shear viscosity of filled polymeric liquids described
by a linear superposition of two relaxation mechanisms
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Abstract: Filled polymeric liquids often exhibit apparent yielding and shear thinning
in steady shear flow. Yielding results from non-hydrodynamic particle—particle inter-
actions, while shear thinning results from the non-Newtonian behavior of the polymer
melt. A simple equation, based on the linear superposition of two relaxation mecha-
nisms, is proposed to describe the viscosity of filled polymer melts over a wide range
of shear rates and filler volume fraction.

The viscosity is written as the sum of two generalized Newtonian liquid models. The
resulting equation can describe a wide range of shear-thinning viscosity curves, and
a hierarchy of equations is obtained by simplifying the general case. Some of the
parameters in the equation can be related to the properties of the unfilled liquid and
the solid volume fraction. One adjustable parameter, a yield stress, is necessary to
describe the viscosity at low rates where non-hydrodynamic particle—particle interac-
tion dominate. At high shear rates, where particle—particie interactions are dominated
by interparticle hydrodynamics, no adjustabie parameters are necessary. A single
equation describes both the high and low shear rate regimes. Predictions of the

equation closely fit published viscosity data of filled polymer melts.
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Symbols

n power-law index

n,,n, power-law index of first (second) term
b shear rate

n steady shear viscosity

Mo zero-shear rate viscosity

No.1» Mo, Zero-shear rate viscosity of first (second) term
time constant

Ay Ay time constant of first (second) term

i, relative viscosity of filled Newtonian liquid
T yield stress

¢ solid volume fraction

D maximum solid volume fraction

1. Introduction

The shear-rate dependence of the steady shear viscosity
of particle-filled polymeric liquids has recently been re-
viewed by Metzner [1] and Kamal and Mutel {2]. What
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is lacking is an equation, relating the shear viscosity to
the shear rate, which is simple enough to be useful and yet
captures the important features of the rheological behav-
jor of filled polymers undergoing steady shear. Previously
proposed equations are either very complicated [3,4] or
do not accurately describe the shear-rate dependence of
viscosity over a wide range of shear rates and concentra-
tions of filler [5, 6].

A typical steady-shear viscosity curve for a filled poly-
meric liquid is shown in figure 1, which exhibits a “yield-
ing” region at low rates, a plateau region at intermediate
rates, and a power-law region at high rates.

Filled polymeric liquids often exhibit a yield stress in
shear flow. However, the existence of a true yield stress
has been debated [7] and what appears to be yielding may
actually be severe shear thinning of a macroscopic struc-
ture in the suspension. Matsumoto et al. [8] have found
that, for a suspension of styrene-divinylbenzene copo-
lymer spheres in a polystyrene solution which exhibits an
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Fig. 1. Typical steady shear viscosity curve for a filled polymer
melt (solid curve). Dashed lines show the contribution of each
term in eq. (1)

apparent yield stress, a flow region exists at very low
shear stress. Matsumoto et al. [9] have shown that a per-
manent electric charge on the styrene-divinylbenzene
copolymer spheres causes the apparent yielding of the
suspension to disappear. Suspensions of coal particles in
various liquids exhibit apparent viscosities which depend
on the polarity of the suspending liquid [10]. Surface
treatment of filler particles changes the apparent viscosity
suspensions in low-viscosity liquids [11]. These observa-
tions suggest that the apparent yield stress originates
from particle-particle interactions which are non-
hydrodynamic in nature. These non-hydrodynamic inter-
actions depend on electrical and chemical properties of
the particles and the particle-fluid interface, such as sur-
face charge, surface potential, or the presence of a surfac-
tant layer.

At higher deformation rates, the non-hydrodynamic
forces on the particles are dominated by the stress in the
fluid, which is determined by the hydrodynamics in the
fluid between the particles. The interparticle hydro-
dynamics depends on the rheological properties of the
fluid and the arrangement of the particles. Experimental
observations of the motion of suspended particles have
been reviewed by Giesekus [12]. Strings of particles have
been observed in suspensions of glass beads in a polyso-
butylene solution [13]. Layers of hexagonally packed par-
ticles have been observed for concentrated suspensions of
monodisperse spheres sheared between parallel plates
[14,15]. The shear-induced particle arrangement is aniso-
tropic and depends on the direction of shearing [16].
Gadala-Maria and Acrivos [17] report that suspensions
of polystyrene spheres in silicone oil exhibited a memory

of the direction of shearing when the volume fraction of
spheres was greater than 0.3.

Different arrangements of the particles can arise in
different types of flow. Thus, the behavior of a suspension
in shear flow can be different than in an extensional flow
[15]. However, even for shear flow the structure may
depend on the specific shear flow geometry: shear flow
between paraliel plates and shear flow in a cone and plate
rotational rheometer can exhibit different values of the
steady shear viscosity [18]. A possible explanation for this
phenomenon might be that the gradient of the rate of
deformation tensor affects the flow induced structure and
hence the stress. If this hypothesis is true then the filled
liquids are non-simple liquids, since their behavior vio-
lates the principle of “local action” (this states that the
stress in a fluid element is determined by the deformation
history of that fluid element and is independent of the
history of neighboring elements). This phenomenon has
not been explored much and will be neglected in the rest
of the paper by assuming that the shear-rate-dependent
viscosity, as measured in one geometry, is predictive for
shear flows in other geometries.

Filled polymeric liquids are viscoelastic and exhibit
memory and normal stresses in shear flow {19]. This vi-
scoelasticity is not apparent in the shear stress of steady
shear flow as will be discussed, however, it would have to
be considered in a constitutive equation for the transient
mechanical behavior of the filled system.

A sudden viscosity increase at high shear rates
(10-10005s~ ') has been observed for highly concentrated
suspensions of micrometer-diameter plastic spheres in
low viscosity liquids [14, 20]. This effect does not seem to
occur in filled polymer melts, for which the viscosity is
observed to monotonically decrease with shear rate.

Highly concentrated suspensions exhibit wall slip in
capillaries and in Couette viscometers [21]. Migration of
filler particles due to particle concentration gradients has
been reported by Leighton and Acrivos [22]. These effects
will not be considered here.

2. Phenomenological equation

The rheology of filled polymeric liquids depends, in a
very complex way, on the structural states of the particles
and the fluid. However, there seem to be two limiting flow
regimes for which the flow behavior might be expressed
in a simplified form. At low deformation rates, the stress
is dominated by the non-hydrodynamic interactions of
the particles. At higher deformation rates, the stress is
dominated by interparticle hydrodynamics which depend
on the rheological behavior of the suspending fluid and
on the arrangement of the particles. A general constitu-
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tive equation would have to describe the particle interac-
tion regime (apparent yielding) at very low deformation
rates and non-linear viscoelastic behavior at higher de-
formation rates. The following will be restricted to a mac-
roscopic phenomenological description of steady shear
flow without attempting to derive a general constitutive
equation.

A typical steady shear viscosity curve for a filled poly-
meric liquid is shown in figure 1. We propose that a linear
superposition of two components may fit the observed
shape of the viscosity curve

1@ =m@G) + ) 1)

where each component has a constant value at low shear
rates and exhibits shear-thinning behavior at high rates.
Inherent in this equation is the assumption that the
stresses due to non-hydrodynamic and hydrodynamic
effects are additive. This assumption seems to be valid at
very high or very low shear rates when one of the terms
dominates and thus, non-additive contributions are neg-
ligible. However, the above equation may be insufficient
for structural fluids at shear rates in which the two effects
are of comparable magnitude. The range of validity will
be explored by comparison with experimental data from
the literature. ‘

The shear rate dependence of the two terms of eq. (1)
will be very different, because the two terms represent
momentum transport by very different mechanisms. For
a material with memory, the shear-rate dependence of the
steady shear viscosity is determined by the rates of relax-
ation processes which occur in the material. In filled poly-
meric liquids, non-hydrodynamic interactions relax very
slowly, and give rise to apparent yielding at very low
shear rates, whereas hydrodynamic interactions relax
quickly, and give rise to shear thinning at high shear
rates.

The proposed behavior, eq. (1), may readily be ex-

pressed by superposition of two Carreau [23] type power- .

law models:

n,—1

n -1 2
n(y) =no, [1+ (4, P2 + 10,201+ (4, Iz . (2

Eq. (2) is valid for positive and negative shear rates. Here,
for simplicity, the symbol 7 will denote the magnitude of
the rate of deformation tensor

7 =VG:9)2 3

which is always non-negative.

Four regions are apparent in the proposed viscosity
curve of figure 1: a low shear rate plateau, an apparent
yielding region, an intermediate plateau, and a shear
thinning region. These four regions are distinct when the
following groups of parameters are ordered in magni-

tude:
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The four regions are delimited by the parameters appear-
ing in eq. (2):
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The first term in eq. (2) contains the non-hydro-
dynamic effects, which dominate at very low shear rates;
describes the apparent yielding and is dependent on the
properties of the particles. The second term contains the
interparticle hydrodynamic effects, which dominate at
high shear rates, and is dependent upon the rheological
behavior of the fluid and the particle volume fraction. It
is interesting to note that a single equation is able to
describe effects of both types.

In the following, several simplifications of eq. (2) will
be examined. Some parameters will be eliminated, and
others will be related to physical parameters of the sys-
tem.

IV) shear thinning,

2.1 Apparent yield stress

A material which possesses a true yield stress has an
infinite zero-shear viscosity, and the shear stress ap-
proaches a constant as the shear rate approaches zero,
making the viscosity at low rates vary inversely with
shear rate. At low shear rates, filled polymer melts exhibit
a large viscosity which decreases quickly with increasing
shear rate. This severe shear thinning of a filled polymer
melt at low rates may not be due to a true yield stress, but
to a very slow relaxation mechanism. This behavior can
be described by choosing very large values for the zero-
shear rate viscosity, #o_,, and the first time constant, 4, .
The power-law parameter n, may vary from 0 to 1.

If the power-law index n, is chosen to be close to zero,
then for shear rate region II, given by eq. (6), the shear
stress will be almost independent of the shear rate, and
the viscosity will be nearly inversely proportional to the
shear rate. Eq. (2) then describes the viscosity of a shear-
thinning material which exhibits an apparent yield stress,
but which possesses a finite zero-shear rate viscosity.
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depend in some simple way on the rheological properties
of the polymer melt and the volume fraction of the filler.
An attempt will be made to predict the values of these
parameters.

For a suspension of spherical particles which interact
hydrodynamically, the stress is determined by the inter-
particle kinematics and the rheological properties of the
fluid. It is assumed that the particle arrangement is inde-
pendent of the deformation rate. It seems plausible that
the steady shear viscosity of a suspension can be predict-
ed from the rheological properties of the suspending fluid
and the particle volume fraction. It has been observed
[24] that the stress in a filled polymer melt, as a function
of shear rate, is the same as the stress in the pure fluid, as
a function of shear rate, evaluated at a shear rate which
is higher by a factor depending only on the particle vol-
ume fraction. That is, the shear stress in a filled polymer
melt may be written as a function of the shear rate and
particle volume fraction as

(4,9 =f(8) =0, 7). (19)

The shear stress as a function of shear rate is “shifted” to
lower shear rates by the presence of filler particles.

The viscosity of a suspension as a function of volume
fraction and shear rate is then given by

n(@, ) =S¢ n0, (8.

Eq. (20) motivates the choice for the factor f(¢) of the
relative viscosity of a suspension of spheres in a Newtoni-
an liquid g, f (@) is defined as the ratio of the viscosity of
the suspension to that of the pure fluid. Here, it is as-
sumed that for a suspension in a non-Newtonian fluid,
the factor f(¢) may be approximated by the relative vis-
cosity. The viscosity of a suspension of spheres in a non-
Newtonian liquid, in the absence of non-hydrodynamic
particle-particle interactions, may be written

n(@, 9 = u(#) O, u ()7

where p,(¢) is the relative viscosity of a suspension of
spheres in a Newtonian liquid in the absence of non-
hydrodynamic particle-particle interactions.

The relative viscosity of suspensions of rigid spheres in
Newtonian liquids in the absence of non-hydrodynamic
particle-particle interactions as a function of volume frac-
tion of spheres ¢ is well known [25], and many equations
are available to describe this dependence [26]. A simple
but accurate equation is that of Graham et al. 27:

1 — _aN\2\l/2 ) - 2.8

o= {ie[ 1 (50 (5) )
- G (22)
where ¢, is the maximum solid volume fraction of the
filler, which is assmed here to be that of close hexagonal

(20)

21

packing of uniform spheres which equals nﬁ/& For
O = n\/i/6, eq. (22) becomes

u(g)={1—¢[1+(0.331¢ — 0.224%)M?]} 725,

Particle size distributions are not considered here, but
may be included by allowing the maximum packing frac-
tion ¢,, to depend on the particle-size distribution.

The parameter #, in eq. (12) represents the viscosity of
the suspension in region III, given by eq. (14). At these
shear rates, non-hydrodynamic particle-particle interac-
tions which give rise to the apparent yield stress are
negligible, and the fluid between the particles is being
deformed at rates below which shear thinning occurs and
may be considered to be a linear viscoelastic fluid. The
additivity assumption of eq. (1) implies that non-hydro-
dynamic effects are accounted for in the first term, and the
second term depends only on hydrodynamic effects. If the
viscoelasticity of the fluid is negligible, the observed vis-
cosity of the filled fluid will be similar to that of a filled
Newtonian fluid. However, since the flow between the
particles is unsteady, it is not obvious that viscoelasticity
of the fluid can be neglected. It is assumed here that the
transient effects of viscoelasticity average out and that the
steady shear viscosity of a filled polymeric fluid, in the
absence of non-hydrodynamic particle-particle interac-
tions has the same dependence on the volume fraction of
solid as a filled Newtonian fiuid:

no(@) = 1, () 16(0).

Once the zero-shear rate viscostiv of the unfilled polymer
melt 7,(0) is known, the parameter 1o (¢) is predicted for
the filled polymer melt by eq. (24).

The maximum time constant 4(0) of the unfilled poly-
mer melt represents the reciprocal of the shear rate above
which the polymer melt shear thins. Eq. (21) predicts the
zero-shear rate viscosity and the time constant of the
filled fluid to have the same dependence on the volume
fraction of solid. The time constant of the filled fluid is
then taken to be

A¢) = 1, ($) A(0).

Eq. (25) predicts the time constant of the filled fluid from
the time constant of the unfilled melt.

Eq. (21) also predicts that the viscosity curve for the
filled fluid at high shear rates, where non-hydrodynamic
forces are negligible, has the same shape as that of the
unfilled melt, but is shifted to higher viscosities and to
lower shear rates. Gleissle and Baloch [24] have shown
that the viscosity curves of filled silicone oils can be su-
perimposed by shifting. Nicodemo and Nicolais [28] used
a shifting procedure to superimpose viscosity curves for
glass bead-filled polymer solutions, but found that the
horizontal shift was different from the vertical shift.

(23)

(24)

(25
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No yield stress appears explicitly in the equation, and
it can be used at all stess levels. For a material with a true
yield stress, the zero-shear rate viscosity is infinite, and a
separate equation is required to describe the rheological
behavior at stress levels below the yield stress.

2.2 Explicit yield stress

Although the yield stress does not appear explicitly in
€q. (2), when the parameter n, is close to zero the value
of the apparent yield stress can be calculated:

= Mo

o= 120, ©)
1

Often the low shear rate plateau (region I) is not ob-
served. In this case, the zero-shear rate viscosity Mo, 1 18
too large to measure, region II extends to rates too low
to measure, and the parameters 7, , and 4,, cannot be
determined individually from experimental data. For de-
scribing data in the measurable shear rate range, the
zero-shear rate limit n, , and the time constant A, are
conveniently taken to be infinite.

Mo,1 = ©, A —00. (10)

However, the ratio of the zero-shear rate viscosity to the
time constant of the first term is taken to be a constant
7o which can be identified as the yield stress, as given by
eq. (9). For a true yield stress, the first power-law expo-
nent n, is chosen to be zero. Noting that for very large
values of 1,, at measurable shear rates,

i1 (11)

Eq. (2) may be rewritten (suppressing unnecessary sub-
scripts):

n—1

=107 o1+ (AT 7 . (12)

Eq. (12) describes a viscosity curve as shown in figure 2.
Three regions of the viscosity curve are apparent: a yield-
ing region at low rates, a constant viscosity region at
intermediate rates, and a shear-thinning region at high
rates. The three remaining regions are delimited, in terms
of the parameters, by:

1) yielding, j<lo (13)
Mo
. . To . 1
HI) constant viscosity, — <7< -, (14)
Mo A
L. 1
IV) shear thinning, 1 <7 (15)

Eq. (12) contains the yield stress explicitly and can be
used only when the magnitude of the stress exceeds the
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Fig. 2. Viscosity curve showing no low shear rate plateau

yield stress. A second equation is required to describe the
deformation at stress magnitudes below the yield stress.

2.3 No intermediate plateau

For materials such as very highly filled poplymer melts,
which possess a large yield stress, and for which the onset
of shear thinning occurs at modest shear rates, the con-
stant viscosity region may not exist [19]. For this case, at
low to moderate shear rates,

n—t
07 > o[l + (A9 7, (16)
and at moderate to high shear rates,
(A9*>1, (17)
and eq. (12) simplifies to:
n=17" " +Ay! (18)

where A =1,4""! is a lumped parameter. Eq. (18) is
identical to the equation of Herschel and Bulkley [5].

3. Prediction of the parameters #,, 4, and n
from the properties of the unfilled melt
and the solid volume fraction

The yield stress 7, is assumed to depend on the particle
volume fraction and on other properties of the particles
which determine the non-hydrodynamic particle-particle
interactions. The yield stress is difficult to predict a priori
and will remain, in this study, an adjustable parameter.
However, the parameters 7, 4, and n are assumed to
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depend in some simple way on the rheological properties
of the polymer melt and the volume fraction of the filler.
An attempt will be made to predict the values of these
parameters.

For a suspension of spherical particles which interact
hydrodynamically, the stress is determined by the inter-
particle kinematics and the rheological properties of the
fluid. It is assumed that the particle arrangement is inde-
pendent of the deformation rate. It seems plausible that
the steady shear viscosity of a suspension can be predict-
ed from the rheological properties of the suspending fluid
and the particle volume fraction. It has been observed
[24] that the stress in a filled polymer melt, as a function
of shear rate, is the same as the stress in the pure fluid, as
a function of shear rate, evaluated at a shear rate which
is higher by a factor depending only on the particle vol-
ume fraction. That is, the shear stress in a filled polymer
melt may be written as a function of the shear rate and
particle volume fraction as

(4,7 =f(¢) (0, 7). (19)

The shear stress as a function of shear rate is “shifted” to
lower shear rates by the presence of filler particles.

The viscosity of a suspension as a function of volume
fraction and shear rate is then given by

n(@,9) =@ n0 f(4)-).

Eq. (20) motivates the choice for the factor f (¢) of the
relative viscosity of a suspension of spheres in a Newtoni-
an liquid p,— f (@) is defined as the ratio of the viscosity of
the suspension to that of the pure fluid. Here, it is as-
sumed that for a suspension in a non-Newtonian fluid,
the factor f(#) may be approximated by the relative vis-
cosity. The viscosity of a suspension of spheres in a non-
Newtonian liquid, in the absence of non-hydrodynamic
particle-particle interactions, may be written

n(@, % = u1, @) n©, (87

where y,(¢) is the relative viscosity of a suspension of
spheres in a Newtonian liquid in the absence of non-
hydrodynamic particle-particle interactions.

The relative viscosity of suspensions of rigid spheres in
Newtonian liquids in the absence of non-hydrodynamic
particle-particle interactions as a function of volume frac-
tion of spheres ¢ is well known [25], and many equations
are available to describe this dependence [26]. A simple
but accurate equation is that of Graham et al. [27]:

1— _AA2\V2T) - 25

wo=fioe[s (- (5 )
Pm - (22)
where ¢,, is the maximum solid volume fraction of the
filler, which is assmed here to be that of close hexagonal

(20)

21

packing of uniform spheres which equals nﬁ/6. For
O = nﬁ/6, eq. (22) becomes

w(d)={1—¢{1+(0.331¢ — 0.224¢%)Y/2]} 3.

Particle size distributions are not considered here, but
may be included by allowing the maximum packing frac-
tion @, to depend on the particle-size distribution.

The parameter 7, in eq. (12) represents the viscosity of
the suspension in region III, given by eq. (14). At these
shear rates, non-hydrodynamic particle-particle interac-
tions which give rise to the apparent yield stress are
negligible, and the fluid between the particles is being
deformed at rates below which shear thinning occurs and
may be considered to be a linear viscoelastic fluid. The
additivity assumption of eg. (1) implies that non-hydro-
dynamic effects are accounted for in the first term, and the
second term depends only on hydrodynamic effects. If the
viscoelasticity of the fluid is negligible, the observed vis-
cosity of the filled fluid will be similar to that of a filled
Newtonian fluid. However, since the flow between the
particles is unsteady, it is not obvious that viscoelasticity
of the fluid can be neglected. It is assumed here that the
transient effects of viscoelasticity average out and that the
steady shear viscosity of a filled polymeric fluid, in the
absence of non-hydrodynamic particle-particle interac-
tions has the same dependence on the volume fraction of
solid as a filled Newtonian fluid:

no(d) = 1. () 1o ).

Once the zero-shear rate viscostiv of the unfilled polymer
melt #,(0) is known, the parameter 74(¢) is predicted for
the filled polymer melt by eq. (24).

The maximum time constant A(0) of the unfilled poly-
mer melt represents the reciprocal of the shear rate above
which the polymer melt shear thins. Eq. (21) predicts the
zero-shear rate viscosity and the time constant of the
filled fluid to have the same dependence on the volume
fraction of solid. The time constant of the filled fluid is
then taken to be

A(@) = 1,(8) A0).

Eq. (25) predicts the time constant of the filled fluid from
the time constant of the unfilled melt.

Eq. (21) also predicts that the viscosity curve for the
filled fluid at high shear rates, where non-hydrodynamic
forces are negligible, has the same shape as that of the
unfilled melt, but is shifted to higher viscosities and to
lower shear rates. Gleissle and Baloch [24] have shown
that the viscosity curves of filled silicone oils can be su-
perimposed by shifting. Nicodemo and Nicolais [28] used
a shifting procedure to superimpose viscosity curves for
glass bead-filled polymer solutions, but found that the
horizontal shift was different from the vertical shift.

(23)

(24)

(25)
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If the shape of the viscosity curve of a polymer melt in
the shear thinning region (region 1V) is maintained with
the addition of filler, then the power-law index of the
filled melt is the same as that of the unfilled melt. It is
assumed here that the power-law index is independent of
solid volume fraction. Eq. (12) may be rewritten, using
eqs. (24) and (25):

n—1
N7 =17""+no S+ Af (AT

(26)
where
S(@) = (1 —¢[1+ (03319 — 0.224 112~ 253, 27

The yield stress 1, is the only remaining adjustable pa-
rameter.

4. Application of the proposed equation
to filled polymeric liquids

Eq. (26) was used to fit the data of Minagawa and
White [19], for four different polymer melts filled with
titanium dioxide having an average particle size of
0.18 um as shown in figures 3—6. The parameters chosen
for these fits are listed in table 1. Good agreement be-
tween theory and experimental results is obtained for
these four different filled melts. It appears that the viscos-
ity parameter 7, and the time constant 1 exhibit the same
dependence on the solid volume fraction ¢ as the viscosi-
ty of a filled Newtonian liquid.

Viscosity data of Gleissle and Baloch [24] for a silicone
oil filled with 50 yum diameter coal particles are shown in
figure 7 with the viscosity predicted by eq. (26). The pa-
rameters chosen for these curves are listed in table 2. The
yield stresses for the coal filled silicone oil are much
smaller than those of the titanium dioxide suspensions.
The hydrodynamic forces on the particles increase with
particle size, the non-hydrodynamic forces decrease with
particle size, and the yielding behavior is suppressed for
suspensions of larger particles.

Suspensions of glass beads with particle diameters of
40 to 80 um in polydimethylsiloxane (General Electric
Viscasil 600000) were prepared, and the steady shear
viscosities were measured for a range of shear rates from
107* to 10*s™* [29]. A parallel-plate rheometer (Rheo-
metrics RSR) was used for measurements at shear rates
from 107 to 10°s™*, and a capillary rheometer (Goett-
fert Rheograph 2001) was used at shear rates from 107!
to 10*s~*. The viscosities of the unfilled polydimethyl-
siloxane and of 50vol% suspensions are shown in
figure 8 with the viscosities predicted by eq. (26) using
the parameters listed in table 3. A low value of the
yield stress was used to fit the curve. The shape of the
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Fig. 3. Steady shear viscosity of TiO,-filled HDPE-0.1 at 180°C.
Data taken from Minagawa and White [19]; solid curve calcu-
lated from eq. (11) using the parameters listed in table 1
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Fig. 4. Steady shear viscosity of TiO,-filled LDPE-5 at 180°C.
Data taken from Minagawa and White [19]; solid curve calcu-
lated from eq. (11) using the parameters listed in table1
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Data taken from Minagawa and White [19]; solid curve calcu-
lated from eq. (11) using the parameters listed in table 1
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Fig. 8. Steady shear viscosity of Polydimethylsiloxane filled
with glass beads. Solid curve calculated from eq. (11) using the
parameters listed in table 3

Table 1. Parameters for calculating viscosity curves

vol.- To Mo A n
fraction
[%] [Pa]  [Pas] [s]
Figure 3 0 0 240000 157 0.470
HDPE-0.1/ 42 100  271000* 177** 0.470
TiO, 12.7 250  362000* 237** 0.470
216 900  526000* 344** 0470
Figure 4 0 0 5560 2.20 0.525
LDPE-5/ 43 12 6290* 249** 0525
TiO, 13.0 150 8490+ 336** 0525
22.1 525 12500* 494**  0.525
360 4400 27000*  10.7** 0.525
Figure 5 0 0 690 0.380 0.690
LDPE-23/ 43 20 780* 0.430** 0.690
TiO, 130 225 1050* 0.580**  0.690
221 2400 1550* 0.853** 0.690
36 17000 3350* 1.84**  0.690
Figure 6 0 0 16900 285 0.415
PS/TiO, 48 35 19400* 3.27* 0415
14.3 31 27100* 4.58** 0415
240 700 41500* 7.00** 0415
38.6 0 97800*  16.5** 0415
* calculated from eq. (24), ** calculated from eq. (25).
Table 2. Parameters for calculating viscosity curves
vol.- To Mo A n
fraction  [Pa] [Pas] [s]
Figure 7 0 0 61.3 0.0024 0.310
Si oil/ 0.10 13 83.8* 0.00328** 0310
glass 0.20 30 125+ 0.00489** 0310
beads 0.30 50 206 * 0.00807** 0.310
0.40 100 393 % 0.0154**  0.310
0.50 550 947* 0.0370** 0.310
0.60 0 3700* 0.145** 0.310
* calculated from eq. (24), ** calculated from eq. (25)
Table 3. Parameters for calculating viscosity curves
vol.- T Mo P n
fraction [Pa] [Pas] Is]
Figure 8 0 0 530 0.029 0.310
PDMS/
glass 0.50 0 8230* 0.448 ** 0.310
beads

* calculated from eq. (24),

** calculated from eq. (25)



270

Rheologica Acta, Vol. 27, No. 3 (1988)

103
F
& 102-
=
[7:
[}
2
>
] 1011
Q
S -]
*
L ]
100. r . r |
10-1 100 101 102 103

shear rate [§ 1)

Fig. 9. Steady shear viscosity of Polyisobutylene in decalin filled
with glass beads. Data taken from Nicodemo, Nicolais and
Landel [30]; solid curve calculated from eq. (11) using the param-
eters listed in table 4
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Fig. 10. Steady shear viscosity of aqueous Polyethylene oxide
filled with glass beads. Data taken from Nicodemo, Nicolais and
Landel [30]; solid curve calculated from eq. (11) using the param-
eters listed in table 4

Table 4. Parameters for calculating viscosity curves

vol.- T Mo A n
fraction [Pa) [Pas] [s]
Figure 9 0 0 24.1 0.0650 0.500
PIB/ 0.10 0 329+ 0.0889** 0.500
glass 0.20 0 49.1* 0.132** 0.500
beads 0.30 0 81.1* 0.223 *+ 0.500
0.35 0 109* 0.295** 0.500
0.40 0 154* 0.416** 0.500
Figure 10 0 0 230 0.350 0.550
PEO/ 0.10 0 31.4* 0.478 ** 0.550
glass 0.20 0 46.9* 0.714** 0.550
beads 0.30 0 77.4* 1.18** 0.550
0.35 0 104* 1.59*+ 0.550
0.40 0 148* 2.24** 0.550

* calculated from eq. (24), ** calculated from eq. (25)

viscosity curve for the filled polydimethylsiloxane is
slightly different to that of the unfilled fluid, that of the
filled fluid being more rounded. This change in shape
contradicts the assumptions leading to eq. (21) — which
allows the shifting of the viscosity curve with no change
in shape. This “rounding” of the viscosity curve may be
due to the fact that, in the filled fluid, the deformation rate
in the fluid between the particles is not homogeneous and
different parts of the fluid are deformed at different rates;
this is opposite to the unfilled fluid which is sheared
homogeneously. Shifting the time constant 1 can account
for the increase in the local average deformation rate, but
cannot account for the fact that there exists a wide range
of deformation rates in the filled fluid.

The proposed equation closely describes the viscosity
of filled polymer melts. To test its applicability to filled
polymer solutions, predictions of the equation were com-
pared with data of Nicodemo et al. [30] for glass bead
filled polymer solutions. Shown in figure 9 is the viscosity
of a 0.043 g/cm3 solution of polyisobutene in decalin filled
with glass beads having diameters from 4 to 44 um. The
parameters used are listed in table 4. The viscosity curve
for the unfilled solution is somewhat more rounded than
that described by eq. (26). The unfilled solution seems to
have a broad disperison of time constants, and a single
time constant may not be sufficient to describe the viscos-
ity data. For the filled solution, good agreement is ob-
tained at low shear rates, but at high rates, the viscosity
curve is again more rounded than the curve predicted by
€q. (26). It appears that the breadth of the time constant
dispersion for the solution is amplified by the presence of
the filler.

In figure 10, the viscosity of a 0.066 g/cm® aqueous
solution of polyethylene oxide (PEO) filled with glass
beads is shown. The predicted viscosity is too low at high
shear rates. The observed viscosity curve does not exhibit
the predicted horizontal shift with increasing solid vol-
ume fraction. Apparently, approximations made in the
model, eq. (26), are not valid for this material. It is
tempting to ascribe the discrepancy between the observed
and predicted viscosity curves to changes in the viscosity
of the suspending PEO solutions with increasing filler
concentration. It is known that the viscosity of aqueous
solutions of PEO is sensitive to small concentrations of
salts [31]. The presence of ions at the surface of the glass
beads would have changed the viscosity of the PEO solu-
tion. It is also known that PEO solutions undergoing
shear are susceptible to mechanical degradation [32]. It
could be imagined that with the addition of filler, the
local deformation rate in the fluid could be high enough
to break PEO molecules and thus decrease the shear
thinning of the solution. Nicodemo et al. [30] were very
careful in preparing the solution and removed any impu-
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rities from the glass beads by washing them with distilled
water and acid and extracting them with isopropanol.
Also, repeated viscosity measurements were made to rule
out changes which would accompany mechanical degra-
dation.

An attempt was made to fit data of Nicodemo et al. [30]
for an aqueous solution of sodium carboxymethyl-
cellulose (SCMC) filled with glass beads. It was found
that eq. (26) overestimated the viscosity in the plateau
region, that is, eq. (24) did not predict the correct solid
volume fraction dependence of the parameter 7. This is
surprising and indicates that non-hydrodynamic effects
are non-negligible at higher shear rates, making the addi-
tivity assumption of eq. (1) incorrect, or indicates that
variables other than the solid volume fraction can affect
the relative viscosity of a filled polymer solution, or indi-
cates that the viscosity of the polymer solution is changed
upon the addition of the glass beads.

It was noted by Nicodemo et al. [30] that the viscosity
of aqueous solutions of SCMC is variable with pH and
efforts were made to control the pH of the suspensions. It
may be possible, despite the careful work of Nicodemo
et al,, that the pH of the suspensions varied with the
concentration of glass beads. This is consistent with the
observation that for the filled PEO solutions, which are
not as sensitive to pH, correct viscosities were predicted
at low shear rates. It is also possible that non-
hydrodynamic interactions are non-negligible at high
rates for the filled SCMC solutions.

The dependence of the viscosity of some filled polymer
solutions is different than that of filled polymer melts. It
appears that non-hydrodynamic effects may influence the
viscosity of filled polymer solutions even at high rates.
This is not taken into account in the additivity assump-
tion of eq. (1). In a polymer melt with a high viscosity,
hydrodynamic forces on the particles is large, even at
moderate shear rates, and are dominant over non-
hydrodynamic forces. In a polymer solution, which has a
much lower viscosity than a polymer melt, hydrodynamic
forces may not dominate over non-hydrodynamic forces,
even at large shear rates. Thus, the additivity assumption
may not be applied to such suspensions.

5. Conclusion

Filled polymer melts exhibit apparent yielding and
shear thinning. Yielding results from non-hydrodynamic
particle-particle interactions, while shear thinning results
from the non-Newtonian behavior of the polymer melt.
A simple equation, based on the linear superposition of
the two effects, can accurately describe the viscosity of

filled polymer melts, over a wide range of shear rates and
filler volume fraction.

Parameters in the equation are closely related to
properties of the unfilled polymer melt and to the solid
volume fraction, so that the resulting equation has only
one adjustable parameter. The viscosity predicted by the
equation was compared with the experimental data for
filled polymer melts and filled polymer solutions and a
good agreement was obtained. A good agreement was
not obtained with the experimental data for aqueous
polymer solutions, indicating that non-hydrodynamic
interactions may be important at high shear rates for
these materials.

The scalar equation proposed describes only the steady
shear viscosity. It should be noted that a general constitu-
tive equation can be constructed from the superposition
of two relaxation mechanisms. Analogously to eq. (1), the
stress tensor may be written:
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T=T+ 1T,

Winter et al. [33] have proposed a two-term memory-
integral constitutive equation which gives the stress ten-.
sor in transient flows. The first term of the memory func-
tion describes apparent yielding and the second term
describes strain thinning and non-linear viscoelastic be-
havior. The superposition of two very different relaxation
mechanisms qualitatively describes the flow behavior of
many fluids with an internal structure. The superposition
principle may be generalized to include more than two
terms. In the limit of an infinite number of terms the
memory function becomes a functional, dependent upon
the entire history of the deformation, and the most gener-
al form of single memory-integral constitutive equation
for a simple fluid is obtained.
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