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Synopsis

Stress relaxation after rapid extensional strain was measured to obtain the
extensional relaxation modulus. The research had the objectives of developing the
lubricated squeezing technique for molten polymers, of applying the technique to
two different polymers, and of testing the “separability hypothesis.” Equibiaxial
extensional flow was generated with a Rheometrics RDS-LA, using the lubricated
squeezing technique. The time dependence of the relaxation modulus was found to
be the same in extension as in shear, given by the relaxation modulus of linear
viscoelasticity. The strain dependence was markedly different than in shear. Sep-
aration of time and strain dependence into a product of two functions is suggested
by the experimental results. This is a strong support for the separability hy-
pothesis and simplifies the formulation of rheological constitutive equations. A
polymer with linear macromolecules (PS) exhibited stronger strain dependence
than a polymer with long chain branched macromolecules (LDPE). The parame-
ters of an integral constitutive equation were determined in rapid strain experi-
ments and the constitutive equation was tested experimentally with stress growth
at start-up of equibiaxial extension. '

INTRODUCTION

Biaxial extensional flows occur in several polymer processing
operations such as film blowing, blow molding, and vacuum form-
ing. The rheological behavior of viscoelastic polymers in biaxial
extension is of prime importance in understanding and improving
such processes. Biax .al extensional data would also be useful as
guidance during tke development of rheological constitutive
equations. Research in extensional rheology has occurred primar-
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ily in the last two decades, and several reviews have appeared in
the literature.! 3 To date four methods have been used to study
biaxial extension: sheet inflation, axisymmetric stagnation flow,
sheet stretching, and lubricated squeezing. .

Sheet inflation involves the extension of a thin polymer shegt
by means of an inert gas® 8 or a silicone 0il.°~1% A hemispherical
bubble was inflated by applying gas at different pressure on both
sides of a sheet. The deformation was measured optically and the
stress in the sheet was determined from the local bubble curva-
ture and the pressure difference. Both stress and strain rate were
changing with time. The use of an incompressible silicone oil as
the inflating medium and a control system for the inflation rate
has enabled constant rate experiments to be performed using this
technique. Controlled biaxial extension, however, is restricted to
the area near the polé of the bubble.

Constant biaxial strain rates were achieved in an axisym-
metric stagnation flow device!*!? in which two impinging fluid
streams are guided by lubricated trumpet shaped walls.}® Flow
birefringence was measured in the plane of symmetry and the
force which tended to separate the trumpets was measured simul-
taneously. Polystyrene melts were investigated at constant strain
rates.

A sheet stretching device consisting of eight rotary clamps has
also been used to obtain biaxial extensional data.'*'° The biaxial
deformation with this device is homogeneous throughout the
sample. Constant strain rate data for polyisobutylene at room
temperature have been reported. High temperatures, as needed
for polymer melt rheology, will be difficult to obtain and to control
due to the bulky design of the rheometer.

These techniques require very sophisticated equipment, large
samples, careful sample preparation, and are limited to certain
temperature ranges. The experiments are also limited to constant
stress and/or constant strain rates.

Recently, the lubricated squeezing technique has been devel-
oped to generate equibiaxial extensional flow.1%17 A small sample
of viscous material is compressed between two lubricated parallel
disks as shown in Figure 1. This technique has the advantages
of simple geometry, small sample size, fast experiments, and a
broad range of temperature control. Another important advan-
tage and the main focus of this study is the ability to perform step
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Fig. 1. Sketch of lubricated squeezing geometry.

strain in equibiaxial extension'® in addition to constant stress
and constant strain rate experiments.

KINEMATICS OF EQUIBIAXIAL EXTENSION
Equibiaxial extension is a special case of axisymmetric exten-
sion which is defined by a velocity field
v = (éaxh - —%’-xz, - -—ezi—xa)- §))]

The components are written in principal coordinates with the 1-
axis being the symmetry axis of the flow. The density is assumed
to be constant. The axisymmetric extension rate .

€ = €(t) = dv/ox, 2)

and extensional strain

€, = €(t',t) = £é1(t”)dt” 3

are positive for uniaxial extension and negative for equibiaxial
extension. The Finger strain tensor of axisymmetric extension
has the components

exp(2¢,) 0 0
C i = 0 exp(—e,) 0 . 4)
0 0 exp(—eg)
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The invariants of C~X(¢',t) are

I, = trace (C™1) = exp(2¢,) + 2 exp(—¢,) (5)
I, = {I, - C"1C™ /2 = exp(—2¢,) + 2 exp(e,) (6)
I3 = 1; (p = const). .

The equibiaxial extension (axisymmetric compression) data are
presented in terms of the biaxial extensional strain

€p = €x(t' 1) = —e€,/2. (8)

One can see from Eqs.(4), (5), (6), and (8) that the first invariant of
axisymmetric extension (uniaxial extension) is equal to the sec-
ond invariant of axisymmetric compression (equibiaxial exten-
sion) and the second invariant of axisymmetric extension is equal
to the first invariant of axisymmetric compression when the in-
variants are functions of a negative €,,

Lie,) = In(— €, | )
12(€a) = Il(‘—ea)- . (10)

These strain invariants are used to describe the strain depen-
dence of the stress in transient experiments. One of the most
informative of these experiments is the step strain experiment.

STEP STRAIN IN SHEAR AND
EQUIBIAXIAL EXTENSION

The step strain experiment is a direct means of measuring the
strain dependent rheology of polymeric liquids. In the experi-
ment, a test sample is placed into the rheometer and the system
is kept at rest until the sample is completely relaxed to the
stressfree state. At time ¢ = 0, a finite strain is “instantaneously”
applied and held constant thereafter. The resulting stress is mea-
sured as it relaxes with time. The analysis of step strain data is
especially easy since only two states of strain are involved, as-
suming that the finite rise time of the strain has negligible in-
fluence. The result of the measurement is the time and strain
dependent relaxation modulus.

For step shear, the relaxation modulus is commonly defined as

Gty = 287 1)
Y21
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with shear stress, 15;, and shear strain, vs;, described in a shear
coordinate system. For step axisymmetric extension, the relax-
ation modulus may be defined as -

[o11 — 022)(tes) _ 011 — 03
Cl—ll _ C2—21 8254. — g %

G.(te,) = (12)
If the strain is a compression (equibiaxial extension) then the
extensional relaxation modulus can be written in terms of the
equibiaxial extensional strain as defined in Eq. (8):

_ O11 — O22
Ge(t,Eb) = ;—_—Z;;—:—??b - (13)

In the limit of small strain, the extensional relaxation modulus
becomes equal to the relaxation modulus of linear viscoelasticity

lim G.(t,e) = 22— T = &), 14
€0 661,

The relaxation modulus of linear viscoelasticity can be described

by a spectrum of relaxation times, A;, and associated relaxation

moduli, g;,

N
G(t) = > g exp(—ti). (15)
i=1

This relation allows one to check the novel extensional flow ex-
periments against well-known small strain shear data. The relax-
ation modulus of linear viscoelasticity can, of course, be obtained
from several different experiments.!® The relaxation time spectra
of the polymers in this study appear in Table 1.2° '

SEPARABILITY OF TIME AND
STRAIN DEPENDENCE

Many authors have suggested that the time and strain depen-
dence of the relaxation modulus can be expressed as a product of
two independent functions, the time dependent relaxation mod-
ulus of linear viscoelasticity, é(t) and a strain function, k. The
separablhty hypothesns has been based on phenomenological ar-
guments® ~?* and on-a molecular theory.?® Shear data support
this hypothesis for molten polymers.?6:?"2° However, no step
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TABLE I
Discrete Relaxation Time Spectra of LDPE and PS Samples
LDPE PS
T, = 150°C T, = 180°C

A &i A 8i

(s} [Pa] [s] [Pa]
5913 x 10! 3.776 x 10* 5.152 x 10* 7.763 x 10*
1.817 x 10! 3.710 x 10° 8.669 x 10° 1.338 x 10°
3.680 x 10° 1.952 x 103 5.135 x 10° 9.275 x 102
6.606 x 107! 1.085 x 10* 1.018 x 10° 1.762 x 10
1.073 x 107! 2.806 x 10* 1.107 x 107t 5.004 x 10*
2.060 x 10~ 2 6.040 x 10* 1.065 x 102 6.978 x 10*
3.026 x 103 1.371 x 10° 9.927 x 1074 1.009 x 10°
3.381 x 10°* 3.027 x 10° 5.821 x 107® 5.558 x 10°

strain data were available for testing the separability hypothesis
in extensional low. Wagner?® calculated an uniaxial strain func-
tion from stress growth experiments at constant rate, using a
particular constitutive equation and data from the literature. The
uniaxial strain function was found to depend on the strain as well
as on the rate of extension.

With lubricated squeezing, a method is now available to per-
form step strain experiments in equibiaxial extension. If the
separability hypothesis holds, the extensional relaxation mod-
ulus can be decomposed

G.te)) = GWOhles), ho<1 (16)
in :che same manner as the shear relaxation modulus
Gyty) = Ghy), hy<1. an

We therefore propose, as a test of the separability hypothesis,
that the extensional relaxation modulus and the shear relaxation
modulus have the same shape, i.e., the ratio of the moduli is
independent of time. At small strain, both strain functions, h.
and h,, adopt a value of 1 and the relaxation modulus in shear
and extension is equal. This will be discussed further along with
the experimental results.

The strain functions can be combined by expressing them in
terms of a generalized strain invariant %

I=(XII+(1“(I)IZ; O<a$1 (18)
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where a is a constant. For axisymmetric extension (positive ¢,),
this strain invariant becomes

I(e,) = ali{e,) + (1 — a)lqole,)
alexp(2e,) + 2 exp(—¢,)] (19)
+ (1 — a)lexp(—2¢,) + 2 exple,)]

while for equibiaxial extension (negative ¢,), I; and I, become
functions of a negative axisymmetric strain. The invariant / can
be rewritten in terms of ¢; as defined in Eq. (8),

I(ey) = alexp(—4€p) + 2 exp(2¢,)] 20}
+ (1 ~ a)lexp(4ey) + 2 exp(—2¢;)].

In shear flows, I is independent of a since I;(y) and I5(vy) are identi-
cal

Ity) = Li(y) = I)(y) = ¥*> + 3. (21)

Possible generalized strain functions can then be written as a
sigmoidal function?’ '

RI) = (1 + a( - 331 (22)

or as the sum of two exponential functions?*

hI) = fexp(—ny, VI — 3) + (1 — f) exp(—n, \/I‘— 3). (23)

The parameter a in the strain invariant, Eq. (18), can be deter-
mined from extensional step strain experiments. Values of a, b,
ny, ng and f were determined from shear step strain experiments®°
and appear in Table II. In comparison, Papanastasiou et al.!®

TABLE II
Parameters for Approximation of Measured Strain Function

LDPE PS
Approximation function Parameters 150°C 180°C

h(y) = fexp(—n;y) + f 0.67 0.88
(1 — f) exp(—nyy) ny 0.304 0.377
. ng 0.070 0.073
h(y) = -1 a 0.172 0.302

1+ay b 1.39 157 ,
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suggested a sigmoidal strain function, Eq. (22), with b = 2 for all
materials.

EXPERIMENTAL
Apparatus and Materials

A linear rheometer (Rheometrics RDS-LA) was used for the
experiments. The rheometer has a linear motor mounted for ver-
tical displacement on which various test fixtures can be attached.
Disks of 25 mm and 10 mm diameter were used. The test fixtures
are surrounded by an air convection oven and temperatures up to
250°C are easily obtainable. The temperature can be controlled to
+0.5K. A transducer with selectable ranges of 0.1 Nm, 0.2 Nm
and 0.5 Nm was used to measure the axial forces. A microproces-
sor controls the strain signal to the motor. A data handling sys-
tem stores the measurement of the resulting strain and force for
transfer to laboratory computers and subsequent analysis.

A linear polymer, PS (Dow Styron 666, polystyrene at 180°C)
and a branched polymer, LDPE (duPont Alathon 20, low density
polyethylene at 150°C) were studied. Samples for the lubricated
squeezing experiments were melt pressed into disks of 25.4 mm
diameter and approximately 2.5 mm thick at 190°C for four min-
utes then quenched in water. The polystyrene was melt pressed
under vacuum and slowly cooled to below 100°C before removal
from the press to eliminate bubble formation in the sample upon
reheating. Smaller diameter samples were cut from these pressed
disks.

Silicone oils (General Electric, “Viscasil” silicones) were used
as the lubricating medium. The choice of a suitable lubricant is
essential in generating a homogeneous extensional deformation.
The ratio of zero shear viscosities between sample and lubricant
was the criterion for selecting a suitable lubricant. A ratio of 500
to 1000 seems to give the best lubrication.?° Polymer and lubri-
cant viscosities appear in Figure 2. Viscasil 600,000 and Viscasil
300,000 were used as lubricants for PS and LDPE, respectively.

Experimental Procedure

A sketch of the lubricated squeezing test geometry is shown in
Figure 1. A disk-shaped sample of polymer is placed between two
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Fig. 2. Zero shear viscosities of samples and lubricants.

lubricated parallel disks. Assuming that the material is incom-
pressible and that the deformation is homogeneous (i.e., the shear
deformation occurs only in the lubricant layer and the polymer
melt undergoes only equibiaxial extensional flow), the axisym-
metric strain rate and strain are

. _1dH
€, — }_1-7 (24)
e, = In(H/H,) (25)

where H,,H are the initial and instantaneous sample thick-
nesses, respectively. The equibiaxial strain, €, is obtained from
Eq. (8). The normal stress difference is obtained from the rela-
tions

Oy — Oz = Fllwr®t)] forr<R  (partial filling)  (26)
G, — G, = F/nR? forr=R (27

where F is the squeezing force on the disks, r is the instantaneous
sample radius and R is the radius of the disks. ;
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The instantaneous sample radius is determined assuming con-
stant density:

r=r, VHJ/H®);, r, = r(t = 0). (28)

The actual experiments proceeded as follows. The parallel disk
fixtures were heated to the desired temperature, the oven was
opened and a layer of lubricant approximately 0.06 mm thick was
applied to the top and bottom disks by means of a wooden spatula.
The lubricant layer thickness was about 1% of the sample thick-
ness. The sample thickness can therefore be approximated by the
separation of the disks. The polymer sample (consisting of two
preformed disks, stacked to give a total initial sample thickness,
H, =~ 5 mm) was centered on the bottom disk and the top disk was
lowered until it just contacted the sample. The sample was heated
to the desired temperature and held there for at least eight min-
utes before the test was started to ensure complete melting and
relaxation of any residual stresses present due to the sample
preparation. The initial disk separation, H,, was measured and
the test begun. The resulting transient axial force was then re-
corded.

Two types of experiments were performed: 1) stress relaxation
after a step in equibiaxial extensional strain and 2) stress growth
at constant equibiaxial extension rate.

Stress relaxation experiments after a step in equ1b1ax1al exten-
sional strain were performed up to €, = 2.3. The 25-mm disks
were used for €, < 0.47 and the 10-mm disks for 0.35 < €, < 2.30.
The equibiaxial extensional strain was measured by removing
the deformed sample after the stress had relaxed to below the
accuracy of the force transducer (after approximately 200 s), wip-
ing any remaining lubricant from the disk surfaces, bringing the
disks into contact and measuring the change in disk displacement
after the temperature re-equilibrated to the test value.

For the step strain experiment, a rapid rise time is desired in
order to avoid corrections to the resultant stress relaxation.2® The
motor response for a step in strain was extremely fast as seen in
Figure 3. Rise times of less than 20 ms were obtained for even the
highest strain of €, = 2.3. Rise times of this magnitude do not
significantly affect the stress response at ¢ = 0.4 s. These rise
times are considerably faster than those obtained in shear step
strain experiments of the same polymers.?°
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Fig. 3. Measured disk separation as a function of time for step strain experi-
ment on RDS-LA.

The stress response after various steps in strain is shown in
Figure 4. The horizontal regions at short times are due to the
force transducer range being exceeded at the start of the experi-
ments. Even though the transducer range was exceeded during
some tests, there was not an appreciable offset at long times.
However, at long times and small strains, some scatter in the
data occurs due to the inaccuracy of the transducer at force levels
less than 5 x 10~* Nm. This scatter is more pronounced for the
LDPE than for the PS. For ¢, > 1.6, the effectiveness of the lubri-
cation is seen to diminish as evidenced by the very high force

" levels at short times and abrupt dips in the force at longer times.

Also any slight disk movements at very high strains, (H, — H)/H,
> (.96, showed up as instabilities in the force measurements.
Therefore, due to the limits of the transducer range and the loss of
effective lubrication, stress relaxation data over two time de-
cades, 0.1 < ¢ < 10 s, and for strains ¢, < 1.5 were considered
reliable. .

Stress growth at constant equibiaxial strain rate experiments
were also performed. In order to generate a constant rate in the
lubricated squeezing experiment, the disks must approach each

other in a logarithmic manner based on the initial separation of
t
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the disks, see Egs. (24) and (25). A substantial discrepancy was

-found between the true strain and the required strain for any

particular prescribed strain rate. The true strain is obtained from
the actual disk separation, In(H/H,), while the prescribed strain
is obtained from the prescribed strain rate at a particular time,
épt, see Figure 5. This problem in the motor displacement re-
sponse prohibits the attainment of a constant strain rate without
some modification of the experimental procedure. This deviation
from constant strain rate is especially severe at higher strains
and is due to the incorrect programming of the motor displace-
ment based on the initial disk separation, H,. Fortunately, this
error can be resolved and a constant strain rate obtained by in-
putting a corrected sample height for the motor control according
to the following relation:

H,,orr = 0.9467 H,. (29)
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This correction method allows a constant strain rate to be gen-
erated and is the same for all strain rates.

Constant strain rate experiments were performed for 0.01 < ¢,
< 0.5 571, A changing area technique similar to the one described
by Frank!” was used. The technique involves using a sample that
has an initial diameter less than the disk diameter and taking
into account the changing area of the sample on the disk surface
when calculating the stress from the force measurements as the
experiment progresses. Figure 6 shows the transient equibiaxial
extensional viscosity

[o,r — 0.1
€

Nyt,€s) = (30)

measured for LDPE and PS using this technique.

RESULTS AND DISCUSSION OF STEP
STRAIN EXPERIMENTS

The strain and time dependent extensional relaxation mod-
ulus, Eq. (13), was determined from the transient stress relax-
ation data of Figure 4. The results appear in Figure 7 where only
the data at a few strains are presented for clarity. The solid line
in Figure 7 is the relaxation modulus of linear viscoelasticity, Eq.
(15), as calculated from the relaxation spectrum of Table I. The
data clearly show that, indeed, the extensional relaxation mod-
ulus is equal to the linear viscoelastic relaxation modulus as the
equibiaxial strain approaches zero.

The lubrication is effective in removing the shear stress at the
top and bottom surfaces of the polymer sample as evidenced by
the shape of the relaxation modulus curves. This is argued with
the following observations: The measured extensional relaxation
moduli exhibit the same time dependence as their respective
shear relaxation moduli obtained from shear step strain experi-
ments and from linear viscoelastic experiments. One would not
expect the same shapes for the shear and extensional relaxation
modulus curves if the lubrication was poor in the squeezing ex-
periment. Furthermore, the time dependent modulus differs sig-
nificantly between the two samples, LDPE and PS. The data, up
to moderate strains, indicate that a true material response was
measured in the equibiaxial extensional step strain experiment
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Fig. 6. Transient equibiaxial extensional viscosity measured with RDS-LA
utilizing changing area lubricated squeezing technique. (a) LDPE, T' = 150°C, (b)
PS, T = 180°C. The linear viscoelastic limit for start-up in shear (lower solid line)
and in extension (upper solid line) is calculated from data of Table I.
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and equibiaxial extension was indeed achieved through effective
lubrication. However, some loss in effectiveness of lubrication
was seen at high strains, ¢; > 1.6 (very small final disk separa-
tions), where the shapes of the stress relaxation curves change
significantly as seen in Figure 4. The curves exhibit unexpectedly
high stress levels at short times along with several small dips in
the curves at long times. These features are attributed to the loss
of effective lubrication as the sample thickness is reduced below
4% of its initial value. The small dips are caused by small move-
ments of the linear drive system, i.e., by small changes in the disk
separation, H(¢).

The extensional modulus curves not only have the same shape
but decrease as the strain increases. This suggests the separabil-
ity of the extensional relaxation modulus into a product of two
independent functions of time and strain, Eq. (16). The strain
function, h,, for equibiaxial extension has been obtained by shift-
ing the modulus data of Figure 7 vertically upwards until they
coincide with the linear viscoelastic modulus. The resultant val-
ues for the extensional strain function versus strain appear in
Figure 8 and are seen to monotonically decrease as the equibi-
axial strain increases. Due to the nonparallelism of the relax-
ation modulus curves at high strains, accurate values for the
extensional strain function for equibiaxial extension could not be
obtained beyond €, = 1.5 0re, = —3.

As already observed with the shear strain function 4,2 the
extensional strain function decreases more rapidly for the poly-
mer with linear macromolecules (PS) than for the polymer with
branched macromolecules (LDPE) although the difference be-
tween the two is not as great as for the shear strain function.

A generalized strain function that describes both shear and
extension, Eq. (18), was used to analyze the extensional strain
function for equibiaxial extension. The prediction of the exten-
sional strain function using the proposed generalized strain func-
tions, Egs. (22) and (23), along with the generalized strain in-
variant for equibiaxial extension, Eq. (20), and the parameters of
Table II has also been plotted in Figure 8. Data from the shear
step strain experiments predict an extensional strain function for
equibiaxial extension between the curves a = 0 and a = 1. The
measured extensional strain function for equibiaxial extension,
h(e), although lying slightly above, is described best by the

{
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metric compression). ( ) from Eq. (22) and (-------- ) from Eq. (23) using con-
stants of Table II.
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curve with o = 1. Just as with the shear strain function, the
sigmoidal form of the extensional strain function, Eq. (22), ap-
proaches the small strain limit asymptotically. For intermediate
strains, the sigmoidal form is therefore better than the form hav-
ing a sum of two exponentials, Eq. (23).

The extensional strain function for uniaxial extension of a
LDPE melt was found to be described best by a = 0 for a general-
ized strain invariant given by Eq. (19), A.[I(e,)].?® Because of the
relation between the strain invariants for axisymmetric exten-
sion and axisymmetric compression as discussed in Egs. (9) and
(10), the extensional strain function for equibiaxial extension,
h.[I(—e,)] with a = 1 is identical to the extensional strain func-
tion for uniaxial extension, hI(e,)], with a = 0. This identity is
easily seen when one plots the extensional strain function for
equibiaxial extension in terms of the axisymmetric strain along
with the extensional strain function for uniaxial extension as
shown in Figure 9.

This leads to the conclusion that the strain function as given in
Eqgs. (22) or (23) can be used to describe both shear and uniaxial
extension or it can be used to describe both shear and equibiaxial
extension. However, the same strain function cannot describe all
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Fig. 9. Extensional strain function, ., in terms of an axisymmetric strain, €,.
The data points are for LDPE, T = 150°C. Lines are calculated from Egs. (1) and
(22) and the constants of Table II, with ( )a = 1 and (-~ Ya = 0.
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three modes of deformation. Further investigations are needed
for finding a suitable form of the strain function.

This same problem occurred to Wagner and Stephenson® dur-
ing the elastic recoil after uniaxial extension. The kinematics of
the recoil is that of equibiaxial extension. A best fit of the recoil
data was found with @ = 1 while the uniaxial extensional data
was described with o« = 0. They proposed to fit the data with a
strain function

hll(e,)] witha =0
hll(—~€;)] witha =1

making use of the symmetry between uniaxial extension and
equibiaxial extension. No biaxial extension data was available
for their LDPE sample.

helI(le )] with o = 0 { (31)

RESULTS AND DISCUSSION OF STRESS
GROWTH EXPERIMENTS

The results of the stress growth during start-up of flow at con-
stant equibiaxial extension rate, €,, were analyzed by applying a
single integral constitutive equation based on the Lodge rubber-
like-liquid equation3!:23:26

t
o(t) = —-p(O1 + J'_wp.(t — tHKDC ™t pdt' (32)

where ¢ (#) is the stress tensor at the instant of observation, p is an
isotropic stress contribution, u is the linear viscoelastic memory
function, A is the strain function, and C ™! is the relative Finger
strain tensor between the states ¢ and ¢'. The memory function is
chosen in discrete form

N ‘
Wt — ) = > Biexp(— L=t (33)
SN A

For equibiaxial extension at constant volume, the relative Fin-
ger strain tensor is given in Eq. (4). The start-up experiment with
constant equibiaxial extension rate ¢, is defined by

&t — ') = és fors<t

€yt fors=t (34)

Eb(t’ ,t) = [
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where s = ¢t — t'. A normal stress difference can be determined
from the memory integral constitutive equation, Eq. (32), and the
kinematics of equibiaxial extension as prescribed with Eq. (34):

t .
lo22 — ouil®) = L w(s)hlI(s)lle™ % — e***)ds
+ GORI@®Ne e~ 2, (35)

The transient equibiaxial extensional viscosity, Eq. (30), was
then calculated by numerical integration of Eq. (35) for different
extension rates and forms of the strain function.

The measured equibiaxial viscosity appears in Fig. 6 where the

- solid lines are the predictions of Eq. (32) in the linear viscoelastic

limit using the material parameters of Table I. The lower solid
line represents the transient shear viscosity n,(y = 0.0001 s~ )
and the upper solid line is m(é, = 0.0001 s~ ). It can be shown
from linear viscoelastic theory that the two transient viscosities
are related by a factor of six, n, = 6m,. At low extensional strains
and for all the measured extension rates, the measured equi-
biaxial viscosity becomes slightly less than the linear visco-
elastic limit. At ¢, = 0.85, the measured equibiaxial viscosity
begins to rise above the linear viscoelastic limit and continues to
rise to very high values at large strains. The strain at which this
deviation occurs increases slightly as the extension rate in-
creases. This rise in stress at large strain may be attributed to the
loss of effective lubrication and is seen for several different poly-
mer melts. Two other lubricants having shear viscosities a decade
higher and lower than the Viscasil 300,000 and 600,000 were
used and the measured equibiaxial viscosity at low strains was
considerably higher than those reported in Figure 6, but ap-
proached the same measured viscosity at high strains indicating
that, regardless of the lubricant, the effectiveness of the lubrica-
tion may be lost and the response at high strains is due to the
extra force needed to shear the polymer sample.

This possible loss of effective lubrication in the constant rate
experiment occurs at a slightly lower strain than in the step
strain experiment. It seems that at these relatively low extension
rates the lubricant has a chance to squeeze out at lower strains,
whereas for the step strain experiment, the extension occurs so
fast (very short rise times) that the lubricant does not have

£
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enough time to be squeezed out and therefore the effectiveness of
the lubrication remains until higher strains.

This rise in biaxial viscosity at large strains has also been seen
by others who have not used the lubricated squeezing technique.
Both Stephenson and Meissner'# with the sheet stretching device
and Rhi-Sausi and Dealy'® with a sheet inflation biaxial rheome-
ter, where lubrication effects are absent, report biaxial viscosities* -
which increase at high strains. However, other experimental
difficulties at high strains makes it difficult’ to-analyze the
data. Better methods of obtaining high strain data are needed.

Even though experimental data at large strains are difficult to
obtain it is instructive to look at the predictions of the equibiaxial
viscosity for the various forms of the strain function obtained
from the step strain experiments. The predictions of the equibi-
axial viscosity appear in Figure 10 for ¢, = 0.1 s~ The three
curves marked L, S, and E correspond to the following choice of
h(I):

L—Lodge®! rubberlike-liquid constitutive equation; A(I) = 1.

S—Sigmoidal form of strain function; A(I) as given by Egs. (22)
and (20) with o = 1.

E—Exponential form of strain function; A(I) as given by Eqgs.
(23) and (20) with a = 1.

The prediction of m,(f) from the Lodge rubberlike-liquid equa-
tion is seer to follow the linear viscoelastic limit at small strains
then rise sharply at €, = 1 and continue to rise to .an infinite
viscosity similar to the uniaxial extensional viscosity.3! The pre-
diction with the sigmoidal form of A(]) is seen to follow the linear
viscoelastic limit at small strains, level off to a viscosity below the
linear viscoelastic limit at intermediate strains and then risein a
dramatic manner to an infinite viscosity at large strains. The
form of h(I) containing the sum of two exponential functions pre-
dicts an equibiaxial viscosity similar to the sigmoidal form up to
intermediate strains as would be expected from Figure 8 where
the functions are nearly identical up to €, = 2. However, at ¢, > 4
the exponential form of k() predicts a constant value of n, that is
less than the linear viscoelastic limit. This feature occurs because
the exponential form of h(I) decreases much more rapidly at large
strains than the sigmoidal form and is able to cancel out the
exponentially increasing part of Eq. (35) due to the equibiaxial
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Fig. 10. Predictions of the transient equibiaxial extensional viscosity accord-
ing to Eq. (36) for various forms of the strain function. L — h(I) = 1, S ~ h(D)
given by Egs. (20) and (22) witha = L, E — k() given by Egs. (20) and (23) with
= 1. (a) LDPE, T = 150°C, (b) PS, T = 180°C.



516 SOSKEY AND WINTER

strain. The measured equibiaxial viscosity is described well by
the memory integral constitutive equation up to intermediate
strains.

CONCLUSIONS

A step strain experiment using the lubricated squeezing tech-
nique has provided a means of directly measuring the extensional
strain function of polymer melts in equibiaxial extension. The
maximum strain with sufficient lubrication was found to be about
€, = 1.6. The novel extensional data support the separability of
the extensional relaxation modulus into time and strain depen-
dent functions. The transient equibiaxial viscosity measured at
constant extension rates with the lubricated squeezing technique
agrees well at low and intermediate strains with the predictions
of a memory integral constitutive equation using the extensional
strain function determined from the step strain experiments. Im-
proved experimental methods are required to accurately deter-
mine the rheological behavior of polymer melts at high equibi-
axial extensional strains.
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the Air Force Office of Scientific Research under Grant F49620-83-K-0006, and
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