Rheologica Acta

Rheol Acta 28:511—519 (1989)

Determination of discrete relaxation and retardation time spectra
from dynamic mechanical data*

M. Baumgaertel and H. H. Winter

Department of Chemical Engineering, University of Massachusetts, Amherst (USA)

1. Introduction

Abstract: A powerful but still easy to use technique is proposed for the process-
ing and analysis of dynamic mechanical data. The experimentally determined
dynamic moduli, G'(w) and G”(w), are converted into a discrete relaxation
modulus G(¢) and a discrete creep compliance J(¢). The discrete spectra are valid
in a time window which corresponds to the frequency window of the input data.
A nonlinear regression simultaneously adjust the parameters g, 4; i=1,2,
... N, of the discrete spectrum to obtain a best fit of G, G”, and it was found
to be essential that both g; and A, are freely adjustable. The number of relaxa-
tion times, N, adjusts during the iterative calculations depending on the needs
for avoiding ill-posedness and for improved fit. The solution is insensitive to the
choice of initial values g; o, 4; 0, No- The numerical program was calibrated with
the gel equation which gives analytical expressions both in the time and the fre-
quency domain. The sensitivity of the solution was tested with model data
which, by definition, are free of experimental error. From the relaxation time
spectrum, a corresponding discrete set of parameters J;, 7, J,; and A; of the
creep compliance J(#) can then readily be calculated using the Laplace
transform.
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dation spectrum; critical gel

posedness increasing as the number of relaxation times in-
creases [1, 2]. We will show that the problem can be avoided

Modelling of polymer processing and analysis of
processing experiments often require the relaxation or
retardation time spectrum, G(¢) or J(¢), instead of
the readily available dynamic moduli, G’, G”.
Therefore it is of great practical use to convert dy-
namic mechanical data (dynamic moduli G’, G”
which are easy to measure) from the frequency do-
main into data in the time domain (linear relaxation
modulus G(¢) which is easy to interpret). This data
conversion should preferably be performed by a self-
contained computer program which does not require
any material specific input beyond the G’, G” data
set.

The determination of the relaxation time spectrum has
been recognized as an ill posed problem with degree of ill-

*) This paper is dedicated to Professor Hanswalter Giese-
kus on the occasion of his retirement as Editor of
Rheologica Acta.

by simply keeping the number of relaxation modes small.
The restriction to a small number of relaxation modes is
therefore not just a matter of convenience (convenient for
data storage or for numerical calculations of viscoelastic liq-
uid flow) but it is a necessity for a meaningful description
of viscoelastic data. Due to this relatively small number of
relaxation modes, the values of the relaxation times can not
be pre-set but they have to be optimized to avoid waviness.
In fact, in our approach waviness is not a noticeable prob-
lem even with a reduced number of relaxation modes.
Dynamic mechanical experiments are most effective for
measuring the relaxation modes of polymeric liquids and
solids over wide ranges of frequency. Highly sophisticated
equipment is commercially available for that purpose. The
sample is deformed sinusoidally at small amplitudes and the
stress response is measured to obtain the dynamic moduli,
i.e. the storage modulus, G’, and the loss modulus, G” [3].
It is a classical problem of rheology to convert the dynamic
data from the frequency domain to the time domain [4, 5,
2]. The problem could be avoided by directly measuring the
relaxation modulus, G(f), in the time domain (step strain
experiment). However, the gained simplicity in the analysis
comes at the expense of the accuracy which is not nearly as
good as for the dynamic mechanical experiment. It there-
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fore is preferable to determine G () from dynamic mechan-
ical data.

The objective of this study is to express dynamic
mechanical data with discrete spectra which allow
prediction of linear viscoelastic behavior in the time
domain. The number of relaxation modes shall be

kept small. Initial results have been presented at
ANTEC 1989 [6].

2. Background

2.1 Linear viscoelastic material behavior

In the range of small deformations, the relation between
the deformation and stress can be described by a con-
stitutive equation which is based on Boltzmann’s superposi-
tion principle [3]
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where T is the stress tensor, y is the strain rate tensor and
G (¢) is the linear relaxation modulus. An alternative linear
viscoelastic constitutive equation expresses the strain in
terms of the history of the time derivative of the stress ¢

!
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where J(¢) is the creep compliance. The linear relaxation
modulus G(¢) and the creep compliance J(¢) are related [3]

t
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Physical models of chain motion give a discrete relaxation
spectrum. For linear polymers of uniform length, the relax-
ation modes are well defined. However, in real polymers the
spectrum is “smeared out” due to the non-uniformity of the
chains and the relaxation modes loose their distinct physical
meaning. In the following, we will consider a discrete relax-
ation (and retardation) spectrum even if it cannot be inter-
preted physically. The relaxation modulus, G(¢), will conve-
niently be expressed as a discrete set of exponential decays

N
G(t)=G,+ Y, gexp(—t/4) @)

i=1

realizing that other decays would be also acceptable [7]. The
N relaxation modes are defined by their relaxation strength
g and their relaxation times A;. The equilibrium modulus
G, is finite for solids (G, > 0) and zero for liquids (G, = 0).
Usmg this discrete spectrum in Eq. (1), the dynamic moduli,
G’ and G"”, become

N 2
G'w)=G,+ ¥ g2 ®)
i=1  1+{@A)?

N 1
G'(w)= Y g —tie . ©)
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From these equations, it can be seen that the discrete relaxa-
tion spectrum (DRS) may be determined from measured
values of the dynamic moduli or vice versa.

2.2 Critical gel

For the development of our method, it is conve-
nient that there exist viscoelastic materials for which
the linear relaxation modulus, the creep compliance,
and dynamic moduli are known in analytic form.
These are materials at the gel point, the critical gels [8]
with a relaxation modulus (gel equation {18])

G)=8t7". @)

It should be noted here, that Heindl and Giesekus [9]
have discussed materials with power law relation and
realized that they are neither liquid nor solid. How-
ever, they did not expect that such behavior does exist
in nature. Some polymers (others than gels) exhibit
power law relaxation at intermediate frequency [10].

The continuous spectrum may be written in discrete
form

o n
Gt)=Y % GQ) e~ | t/dy>1 . ®)
i=0 i

For simplicity, the spacing a of the relaxation times
may be chosen equidistant in a log scale, 4;= 441 10'e,
A is the shortest mode in the power law spectrum.
The creep compliance of gels also has power law
format
(a-n)t"
SIr2-n)r(1+n)

= . n
=Y Jio <:1T'> d-e "%, t/Ag>1 . (9)
i=0 0,

J({t)=

and it also can be expressed in discréte form, where
the spacing of the retardation times may be chosen
equidistant in the log scale, A; = Ayt 10'e .

The complex modulus G* of a critical gel is given
by

G*=G'+iG"=Srl—-n)o"
X [cos (nn/2)+isin(nn/2)] . (10)

We will use the explicit relations as an independent
check of our solution. It is especially useful that the
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continuous spectra are expressible in discrete form
because our method relies on the choice of a discrete
spectrum.

3. Conversion from the frequency to the time
domain

Three methods of conversion are found in the
literature. The first method uses a Fourier transfor-
mation

G(t) = Ge+ 5 Q(—“’)——QJ sin(wt)dw  (11)
or
Git)=G,+— Of —w cos (wt)dw 12)
o (7))

which is commonly split into 3 parts:

Wmin @max o
G(z)=3<§ cdo+ | .do+ | ... do
n 0 @min @max

(13)

The first and the third term require data extrapolation
in the frequency range from w = 0 to wpy;, and from
Wpax t0 oo, while experimental data are only avail-
able in the intermediate window (second term). It is
obvious that this extrapolation process is highly ar-
bitrary. A detailed description of the Fourier Trans-
form method has been given recently [19].

A second method utilizes empirical correlations
which are successful for wide classes of materials [3,
5]. However, for complex materials one would like to
have a more general conversion method.

In the third method, the parameters of a discrete
relaxation spectrum are found by simply fitting Eqgs.
(5) and (6) to G’, G” data. The coefficients, g;, and
relaxation times, A;, are determined such that the av-
erage square deviation between predicted G’, G”
values and measured G’, G” data is minimum (least

squares fit):

n (owy 1. [6"wp T

E([ & 1]+{—LG” —1]>=min.

i J (14)

G}, G/ are the measured data at m frequencies w;
and G’, G” are calculated values from Eqgs. (5) and
(6). From here one might progress by prescribing a set
of A; and calculating the coefficients g; [11, 12]. Dif-
ferentiating this function with respect to g; leads to a

set of linear equations which can be solved numerical-
ly. The convergence of the solution can be improved

by using the classical Tikhonov regularization method
[2, 13]. Negative coefficients, g; < 0, may appear if
the spacing of the relaxation times is too small [2].
In this study, we also use the third method, how-
ever, with a major difference. In our experience, it is
necessary to keep not only all g; but also all A; freely
adjustable. Additionally, the number of relaxation
modes, N, has to be a freely adjustable parameter.
The resulting coefficients are necessarily all positive.
The choice of N is crucial for the success of our
method. With too few relaxation modes, the average
deviation (residual in Eq. (14)) is large. However, it
decays rapidly when increasing the number of relaxa-

" tion modes, N. Above a certain value of N, the

residual starts levelling off and a further increase of
the number of relaxation modes is not justified since
one would not want to reduce the average deviation
below the error bar of the measured G’, G”. At that
high number of relaxation modes, negative g;-values
start to occur and the problem becomes ill-posed.
Also, in most practical cases the finite number of data
points is not sufficient to determine the excessive
number of parameters g; and A; at high value of N. In
our numerical program, the initial number of relaxa-
tion modes is chosen empirically between 1 and 2 per
decade. It was found to be advantageous to start with
a large number of relaxation modes and let the pro-
gram merge or eliminate unnecessary ones. One
criterium for reducing the number of relaxation times
was the occurrence of negative g;-values.

The program also applies to viscoelastic solids,
even in cases where the equilibrium modulus can not
be determined since it would require extrapolation
beyond the accessible frequency window of the dy-
namic experiment. In most cases we found that more
modes are necessary to describe the relaxation of
viscoelastic solids than of a liquid in a comparable
time range.

4. Relation between discrete retardation
and relaxation spectra

The calculated relaxation spectrum also defines the retar-
dation spectrum. Methods of calculating the retardation
spectrum from a relaxation spectrum are well known {3, 4,
14]. The calculation is especially simple for discrete spectra.
The relations are easiest to understand when derived from
the beginning. Since the relaxation spectrum is given in
analytical form, one can solve the convolution integral, Eq.
(3), using the Laplace transform

G@s)J(s)y=1/s2 . 15)
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The Laplace transform of the linear relaxation modulus of
a viscoelastic liquid, (G, = 0),

6= T 5
(S)_i§1 s+1/4;

(16)

is substituted into Eq. (15) to give the retardation spectrum
in the Laplace domain')

N
I s+1/4)

)=+ bk 17
€)== ~ : (7
E 8; H (s+1/4;)
i=1 k=1,i
This may be rearranged by using partial fractions:
K.k, No _
Jey="0, iy S (18)
s s =1 (+1/4)
with the constants
N
I a+1/a)
1 k=1 c
Ko= —K+— + Y —= (19
Gy Nt k=1 (1+1/4;)
II a+1/4,)
k=1
1t N=1ag
K, = —* (20
GoAn k=1 A
I (-)
1 k=1 Ay
c’.=————N—1—"———; i=1, ,N-j (21)
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N
Gy = .): & 22)

The N—1 discrete retardation times are the inverse of the
real roots of

o (f

i=1 =1,i

N-1
(s+1//1,,)) =G, [[ s+1/4) .

i=1

23)

The ordering of the relaxation and retardation times
is found to be [15]:
M<A <A< ...<An_ 1 <AN 1 <Apn - 24)

The retardation spectrum J(s) can then be transform-
ed back into the time domain

Y Notation
N

I1 a. Multiply all a, except g,
k=1,i

1

N—
J@)=Jdg+t/n+ Y Jg W@, Jai=c (25)
i=1
with the instantaneous compliance J,
N-1
Jg=Ko— E Ci (26)
i=1
the steady shear viscosity
N
n=1/Ki= Y &, 27)
i=1
and the retarded compliance
Jg, i Pit) = ci(1 — e~y | (28)

The derivation for viscoelastic solids (G, > 0) is ac-
cordingly as shown in Appendix A.

5. Calculated discrete relaxation and retardation
spectra

Three spectra will be discussed in the following.
Starting from measured data G’, G” the discrete
relaxation spectrum will be calculated first and from
that, the discrete retardation spectrum is obtained.

Our method can be demonstrated on a blend of two
monodisperse polystyrenes of different molecular
weight using the published dynamic mechanical data
of Schausberger et al. [16, 17] as shown in Fig. 1. The

" [Pa]
- [
O‘ °un
FETTITT

FETTT |

G'

—

o
(2]

G',
I .°I Illlllll

[
o

-

—
o

-3 -2 -1 0 1 2 3 4
10 10 10 10 10 10 10 10

w [s']
Fig. 1. Dynamic moduli vs. frequency for a blend of two

monodisperse polystyrenes of different molecular weight
(50% of M,, = 125000 and 50% of M,, = 750000) {16, 17]
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Fig. 2. Discrete relaxation and retardation spectrum cal-
culated numerically from data of Fig. 1. The corresponding
relaxation modulus and creep compliance are calculated
with discrete spectra
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Fig. 3. Contribution of each mode to the storage modulus,
G’, of Fig. 1

Table 1. Parameters of the discrete relaxation and retarda-
tion spectra for the sample of Fig. 1

i glPal 48] ¢ [Pa”] A; [s]

1 399000 1.10610~4 1.987 10" 2.688 104
2 59200 1.066 103 1.109 10-6 7.18510°3
3 37300 5.8371073 1.293 106 1.4191073
4 38800 2.716 1072 1.562 108 3.5021072
5 62500 1.397 10! 3.662 10~ 2.432 107!
6 25300 4.468 10~ 1.247 105 8.697 10!
7 13400 2.861 10° 1.48510°% 4.67710°
8 14100 1.743 10 1.50510°3 3.332 10
9 6120 5.142 10!

6
10

L1111

—
o
o
|

G" [ Pa]
— —
(=) o
(%]
i IJIIIIII 1 1 12tin

|

2
10 —

Fig. 4. Contribution of each mode to the loss modulus, G",
of Fig. 1
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Fig. 5. Calculated relaxation modulus and contribution of
each mode for data of Fig. 1

line through the data points is calculated with the fit-
ted relaxation time spectrum. The calculated values of
the parameters of the discrete relaxation and retarda-
tion spectrum are given in Table 1 (see also Fig. 2).
The instantaneous compliance and the zero shear
v1sc051ty are J,=1.526-10"°Pa~' and 7 =6.202
-10°Pas respectlvely

The contribution of the discrete relaxation modes
are shown for the dynamic moduli, Figs. 3 and 4, and
the linear relaxation modulus, Fig. 5. Domination can
be seen by the relaxation modes No. 1, 5 and 8. These
relaxation modes can be considered to be characteris-
tic of this polymer blend, while No. 9 has the longest
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Fig. 6. Dynamic moduli vs frequency for polymer modified
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Fig. 7. Discrete relaxation and retardation spectrum
calculated numerically from data of Fig. 6. The correspond-
ing relaxation modulus and creep compliance are calculated
with discrete spectra

relaxation time. Notice that the spacing between the
relaxation times is not equidistant. Since the result of
the regression is independent of starting value sets,
the solution seems to be unique in the case of a small
number of relaxation modes. There is no sign of ill-
posedness. Obviously, the solution changes when
altering the value of N or the weight factor in Eq.
(14).

The “plateaus” in the measured dynamic moduli
and the calculated G(f) have a physical meaning as

A -
10 way [radsl]

Fig. 8. Evaluation of the dynamic moduli of a crosslinking
polymer at increasing degree of crosslinking (increase
crosslinking time) [18]. The lines are calculated with discrete
spectra. Data in the liquid and in the solid range are approx-
imated equally well. No attempt is made to extrapolate to
the equilibrium modulus

10
42. )
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3
— 10
s 3
A 3
[u—) . 2]
o 10 E +2
l_ \\\\
10 3 Before Gelation t, -
o: -2
-4 -3 -2 ~1 0 1 2 3
10 10 10 10 10 10 10 10
t/a; [s]

Fig. 9. Evolution of relaxation modulus during liquid/solid
transition as calculated from Fig. 8

discussed by Schausberger. Unfortunately, ex-
perimental data of the relaxation modulus of this
polymer blend are not available to compare with the
calculation.

The second example, a commercial blend of tar and
oil, demonstrates the ease with which the approxima-
tion of complex data over a frequency range of 14
decades is achieved, see Figs. 6 and 7. The data scatter
does not cause a major problem except that it slightly
increases the computation time.
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Fig. 10. Evolution of creep compliance calculated from
Fig. 8

A third demonstration uses published dynamic data
of a crosslinking polymer which undergoes gelation.
The dynamic data of Chambon and Winter [18] con-
sist of five spectra (Fig. 8), each of which corresponds
to a specific extent of crosslinking. The evolution of
the relaxation modulus (Fig. 9) and the creep com-
pliance (Fig. 10) can now be seen clearly: Before the
gel point, the polymer can relax completely, at the gel
point the polymer relaxes in a power law, and beyond
the gel point the polymer can only relax to an
equilibrium value (equilibrium modulus).

10 5
3 Simulated Data
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B ]
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1 100| 2 2
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Fig. 11. Test of sensitivity. Dynamic moduli are calculated
for two discrete model spectra. Note the small deviations in
G’ due to variations in A, and 1,. The g-values are the
same for both spectra. The waviness is produced by the ar-
tificial choice of relaxation spectrum

6. Test of sensitivity

Experimental data are obviously biased by noise
and the calculated spectra do not only reflect the ac-
tual relaxation modes of the material but they also de-
pend on the experimental error. In other words, the
same material measured dynamically with different
noise will give a different calculated spectrum. We
often realized how easily our program follows the
details of some scatter in the data. For the following
sensitivity test, we use model data which do not con-
tain the experimental noise. The model data are
generated by choosing a set g;, A; and calculating
G'(w), G"(w) in the corresponding frequency win-
dow (rounding errors are insignificant here).

Two sensitivity tests of the iterative data fitting pro-
gram were performed with the objective to answer the
following questions:

1) Does the program recover a set of g;, 4;, N from
model data G’'(w), G"(w)?

2) How close can two relaxation times be without be-
ing lumped into a single mode?

Concerning the first question it is found that the
program recovers the known DRS independently of
the start values Ny, g; 0, and 4, o.

To answer the second question, dynamic moduli
are simulated for two DRS. Both DRS consist of 6
relaxation times (Fig. 11). In the second DRS the
relaxation times A;=A,=1s"' are replaced by 2
relaxation times A;=0.63s”! and A,=1.58s7"
which are relatively close together. The coefficients,
g;, are the same for both DRS. The calculated dy-
namic data for these two DRS are plotted in Fig. 11.
The deviations of these two curves are very small.
However, the program recovers both DRS exactly.

The conclusion from this test is that the DRS can
be recovered from model data sets even if 2 relaxation
times are relatively close together. This result also in-
dicates that the problem is not ill posed in the range
of a small number of relaxation modes, since the only
unique solution is recovered. This is an encouraging
result. However, it should be noted again that for real
experimental data, relaxation times which are close
together are lumped into a single mode because of the
experimental scatter.

In a further simulation, relaxation modulus and
creep compliance of a critical gel are simulated and
compared with the solution using discrete spectra
(Fig. 12). Simulated dynamic data (Eq. (10)) serve as
input data to calculate the discrete relaxation and
retardation spectra. The resulting relaxation modulus
and creep compliance agree very well with the analytic
power law solution. This is an additional demonstra-
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Fig. 12. Comparison of the relaxation modulus and creep
compliance: The analytic power law spectra are shown with
the corresponding discrete spectra

tion of the accuracy of the employed data conversion
methods.

7. Conclusions

The parameters of a discrete relaxation spectrum
&» A; i=1...N have been determined by simply fit-
ting dynamic mechanical data. Ill posedness of the
problem was avoided by keeping the number of relax-
ation modes small. Recognizing this requirement, one
can apply a non-linear regression in which not only
the g; and A; are adjustable parameters, but also N
has to be variable. The discrete relaxation spectrum
can be directly transformed into a discrete retardation
spectrum. The longest relaxation and retardation time
and the characteristic shorter modes are determined
with an accuracy which depends on the quality of the
experimental data G, G".

One advantage of the robustness of the proposed
method is its simple conversion into a fully automated
numerical program. On a personal computer, a
typical comutation time is about 10 min. The solution
is independent of the starting parameter set g;, 4;
i=1,2,...N. Any dynamic data measured in our
laboratory or made available to us by others have
been successfully converted into the time domain. It
is a most useful tool in our laboratory, especially for
establishing a rheological data bank, for analyzing
viscoelastic experiments, and for numerical simula-
tion of polymer processing. Creep experiments for
testing the retardation spectra are in progress.

Appendix A

Discrete retardation spectrum of a viscoelastic solid

The discrete retardation spectrum of a viscoelastic solid
can be calculated in the same way as shown for the liquid,
except the equilibrium modulus G, has to be accounted
for. The retardation times and relaxation times are now
related as

N N N
Ge(H (s+1/lk)>+(z g,~< H'(S'f']/lk)
k=1 i=1 k=1,i

N
=G, [[ s+1/4) (A1)

i=1

where G, = G,+ Y g; and the constants K, and ; are given
here by

K= (A2)

The discrete retardation spectrum contains now N modes
where the ordering of the retardation times is found as:

Ai<A <Ah<...<Ay_ <Ay<Ay . A4

Since no permanent deformation is observed in viscoelastic
solids the creep compliance is found to be

N-1
JO=J+ Y, Ji ¥ .

i=1

(A5)

The instantaneous compliance J, and the retarded com-
pliance are given by the same relation as before, Eqgs. (27)
and (28).
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