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Abstract

A relation has been derived between the continuous and the discrete
forms of linear viscoelastic relaxation-time spectra. Both forms can be
interconverted, and they are equivalent in their ability to reproduce
G'(w), G"(w), or G(¢t) data. The linear superposition of even only a few
Maxwell-modes is able to mimic the continuous form. This rapid conver-
sion leads to the ‘parsimonious’ spectrum which models the linear vis-
coelastic relaxation with the smallest possible number of modes. Typical
experimental spectra of broadly distributed and of monodisperse polymers
provide the means for testing the proposed relations. Effects of noise and
data density were studied for G’, G"-data sets.

Keywords: relaxation time spectrum; Maxwell-mode; parsimonious spectrum; BSW-spec-
trum

1. Introduction

The molecular mobility of polymeric liquids and solids expresses itself in
a relaxation-time spectrum. This can be seen when mechanically probing
the material over a wide range of time scales or rates. The relaxation-time
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spectrum, denoted as ‘spectrum’ in the following, may be written as a
continuous function, H(A), or as a sum of discrete terms, each of them
having a characteristic time constant, A,. The best known molecular models
for the relaxation of linear macromolecules predict discrete spectra in
which the individual relaxation modes are prescribed by molecular parame-
ters of the polymer [1-3]. Experimentalists are also used to determine
discrete spectra from their linear viscoelastic experiments. Discrete spectra
are also used extensively in flow modeling. They have the advantage that
they can easily be integrated for predicting a wide range of linear viscoelas-
tic material functions [4]. Even if one knows the continuous function H(A)
for a specific material, one may want to convert it into its discrete form for
easier calculations of these viscoelastic material functions.

The relaxation-time spectrum of viscoelastic materials, H(A), is com-
monly defined through measurable linear viscoelastic material functions
such as the relaxation modulus G(¢) [4]

. dA
G(t) =Gc+f0 H(2) exp(~t/A)~ (1)

with an equilibrium modulus G, which is finite for viscoelastic solids and
zero for viscoelastic liquids. The spectrum is also the kernel of several
important rheological functions like the storage modulus, G'(w), and the
loss modulus G"(w)

G'(w)=G +/°°H(A)-f’iﬁ—3)i @)
¢ J 1+w?A® A7
., o wA  dA
G"w) = [ HO T 3 ®

There is an infinite number of ways for discretizing a specific continuous
spectrum. We therefore have to make a few choices before we continue.
Discrete relaxation modes, for instance, may be expressed by very different
choices of decaying time functions. Examples are exponential decays or
Maxwell-modes [5], stretched exponentials or Kohlrausch-modes [6], trun-
cated power laws or BSW-modes [7]. Differences between these modes are
insignificant for infinitely close spacings of the relaxation times, however,
they become important with wider spacings. Maxwell-modes, g;, A;, i =
0,1, 2,..., N, have been preferred since they are most easily incorporated
in modeling calculations. The relaxation modulus, for instance, becomes

N
G(t)=G, + Zgl. exp(—t/A;). (4)
i=0

A
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The corresponding relaxation time spectrum may be expressed as

“Leolr-5) .

i

where 8(x) denotes the Dirac delta function which has unit area and zero
value everywhere except at x =0 where its value is 1. The following
discretization will be restricted to such Maxwell modes.

The relaxation spectrum H(A) cannot be measured directly in an experi-
ment. In practice, linear viscoelastic data such as the dynamic moduli
G'(w), G"(w), the dynamic compliance J'(w), J"(w), the relaxation modu-
lus G(¢), or the creep compliance J(¢) are directly converted into H(A) by
means of heuristic formulae [8] or the data are suitably fitted by discrete
spectra. Such fitting methods include least-square approximations [9-11],
Contin [12], regularization methods [13,14] and maximum entropy methods
[15,16). Some of the methods have been compared recently by Orbey and
Dealy [17]. Baumgaertel and Winter [11] recently proposed a method for
representing the relaxation spectrum of a material with the fewest possible
Maxwell-modes while remaining within the experimental scatter of the
available G', G"(w) data. Such a representation is called a ‘parsimonious’
model (PM-spectrum). It is based on the idea that the discrete relaxation
times should be freely adjustable so that they converge to values which are
characteristic for the material. Neighboring relaxation modes are allowed
to merge so that the number of modes gradually shrinks until the PM-spec-
trum model is found. The spacings between neighboring modes depend on
the specific material. A major advantage of the parsimonious model is the
rapid conversion of the regression algorithm, even for very complicated
spectra. The regression procedure is assigned to a standard software called
IRIS and, for brevity, we shall identify the calculated spectra as PM-spectra
having PM-modes and PM-standard deviations in their ability to fit data.
Throughout this paper, PM-modes will be calculated and used as a conve-
nient way of describing G', G” data. This gradually will lead to an
understanding of the parsimonious model.

The determination of discrete spectra is understood quite well; however,
it seems to be difficult to convert these spectra into continuous ones and
vice versa. This will be addressed in the following study. As a starting point,
we postulate that there always exists a discrete set of Maxwell-modes which
represents the continuous spectrum with sufficient accuracy, even if the
spacing between two neighboring relaxation times may be fairly large. The
consequences of such discretization have to be explored in greater detail.
For that purpose, we choose two typical continuous spectra, H(A), and
express them with a sum of representative Maxwell-modes. By increasing
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the spacing between neighboring relaxation times, we attempt to find the
‘parsimonious’ spectrum which represents the continuous spectrum with
the fewest possible discrete modes. Necessary criteria will be defined for
distinguishing an acceptable spectrum from an unacceptable one.

2. Interrelation between continuous and discrete relaxation-time spectra

For the discretization of the continuous spectrum H(A), one may lump
sections of H()) within time windows [A;" ... A;] around A, into represen-
tative Maxwell-modes. This is sketched in Fig. 1. The relation between the
Maxwell-modes and the continuous spectrum will be analyzed in the
following. In our analysis we start out with a set of discrete relaxation
times, A;, i =0, 1, 2,..., N. The spacing

=a;, with A;> A, (therefore a>1) . (6)
i+1
can be chosen to be either equ1dlstant or non-equidistant on a logarithmic
time scale. In the case of equidistant spacing, all spacing factors a; are
identical (a; = a). Following the usual convention, the zeroth mode has the
longest relaxatlon time and the A, values decrease monotonically with
increasing i.
For the window boundaries, A; and A;, one may choose geometrlc
averages of the relaxation time A; and its neighboring relaxation times A,
and A,_,, respectively

A =Khiey and A7 = A, . 0

iscretization of Continuous Spectra

N=VNSTONON

log H —»

At N Ay
log \ —»

Fig. 1. Schematic of the discretization of a continuous spectrum. Sections of the continuots
spectrum [A; ...A; ] are lumped into discrete relaxation modes. ‘
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This specific choice gives acceptable results as will be shown below.

The relaxation strength, g,, is obtained by integration of H(A) in this
finite relaxation time window, [A;" ... A; ]. Comparison of eqns. (1) and (4)
shows that the ith representative Maxwell-mode is given as

AT dA
g exp(—t/A) = [ H()) exp(—t/A)—— with 1> 0. (8)
AF

For a narrow spacing of the relaxation times eqn. (8) simplifies to

g =1In VAi-—l/Ai+1H(’\i)‘ (9)

This relationship simplifies even further for a narrow equidistant spacing
g;=Ina H(),). (10)

Note that the relaxation modes fall onto the continuous spectrum g; = H(A,)
for the special case In a =1 or a =2.72.

The discrete spectrum converges to the continuous spectrum for the
limiting case that the spacing is very close (a — 1). It will be interesting to
find out how far apart the modes can be spaced without violating the above
eqns. (9) and (10).

In the next Section two typical continuous spectra, one for broadly
distributed linear polymers and one for narrowly distributed linear poly-
mers, are discretized using eqn. (10). Discretization artifacts are demon-
strated on related material functions such as G'(w), G"(w), G(¢). Utilizing
eqn. (9), we shall also show that discrete PM-spectra [11] have an equiva-
lent continuous form. Consistency tests confirm the conversion procedure.

3. Case studies: Discretization
3.1 Discretizing ‘smooth’ relaxation-time spectra

In the first case study we discretize a smooth spectrum which has no
sudden jumps or cut-offs. This type of spectrum is often observed for
broadly distributed linear flexible polymers. Examples are data of three
broadly distributed polypropylenes with different molar masses (18]. The
dynamic data G’, G” of these samples are shown in Fig. 2. The dashed
lines represent the fit of the data using discrete PM-spectra. Surprisingly,
we find that a continuous BSW-spectrum [7] with a stretched exponential
cut-off at a characteristic relaxation time A7, ‘

H(A)= +H,

A A\
neG,ﬂ’,(;\—— 7\—) }exp(—-/\//\’max)ﬂ for M,> M,
(11)

€
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Fig. 2. Storage modulus G’ (a), loss modulus G” (b) and loss tangent tan & (c) of three
broadly distributed polypropylene samples of ref. 18. The molar masses of the samples are
PP-1: M, = 75000 g mol~!; PP-2: M,, =132000 g mol~! and PP-3: M,, = 375000 g mol !
(determined from intrinsic viscosity measurements). The dashed lines represent the fit with
the PM-spectrum while the solid lines are calculated with the BSW-model with stretched
exponential cut-off at A\, and 8 =0.39.
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Fig. 3. Relaxation spectra of the samples from Fig. 2. The discrete PM-spectra agree very
well with the continuous spectrum.

represents the data extremely well (solid lines in Fig. 2). In this empirical
model G,‘i, is the plateau modulus, n, and n, are the slopes of the
spectrum in the entanglement and glass transition regimes, H_ is the
glass-transition constant, A, the relaxation time corresponding to polymer
chains with entanglement molar mass. The exponent 8 controls the sharp-
ness of the cut-off of the spectrum. Note that a physical interpretation of
this empirical spectrum is not attempted here. This spectrum is identical to
a BSW-spectrum for narrowly distributed polymers [7], except for the
cut-off at the longest relaxation time A_,, which is now replaced by a ‘soft’
stretched exponential cut-off. Using eqn. (9) we find, that within the
experimental scatter, the relaxation modes of the parsimonious model
(PM-modes) fall onto the continuous BSW-spectrum with stretched expo-
nential cut-off (see Fig. 3). We therefore propose to use eqn. (11) as the
spectrum for describing broadly distributed polymers.

Motivated by these experimental findings, we consider the above spec-
trum as a convenient example which allows testing of the discretization
procedure. The results, however, are not limited to this particular type of
spectrum. The solid curve in Fig. 4 shows a typical BSW-spectrum with
stretched exponential cut-off with an exponent of 8 = 0.5. This continuous
spectrum is discretized (eqn. (10)) using five different spacings. As ex-
pected, the g-values of the discrete spectra do not fall onto the curve of
H(A). Note that all discrete spectra have the same shape. They can actually
be generated by shifting the continuous spectrum vertically by an amount
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Discretized Relaxation Time Spectra
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Fig. 4. A typical BSW-spectrum with stretched exponential cut-off (8 = 0.5) at a characteris-
tic relaxation time A, is discretized. The spacing between neighboring relaxation times is
varied from log a = 0.1 to 0.9.

In a (see also eqn. (10) in support of this observation). This is an important
observation which seems to be a typical property of discrete spectra. It will
be useful in the reverse calculations, i.e. when converting discrete spectra
into their continuous form. :

Figure 5 shows the dynamic moduli which are calculated from the
different forms of the spectrum of Fig. 4. A slight waviness in G’ and G”,
can only be noticed for the spectrum with the widest spacing (log a = 0.9).
The deviations

N =1og (G4y/Glon); A" =log (Glis/ Gl (12)

show that curves calculated with discrete spectra oscillate around the
curves calculated from continuous spectra (Figs. 6(a)—-6(b)). The loss modu-
lus G” exhibits a more or less uniform waviness, since the discrete modes
contribute locally to this curve, while the storage modulus G’ is wavy only
near the transition from the terminal zone to the entanglement regime.
The peak-to-peak distance of the oscillation is equivalent to the spacing
log a. The waviness artifact can hardly be recognized if we use 1.5
relaxation times per decade or more.

The calculated relaxation modulus (Fig. 7) is more sensitive to discretiza-
tion. It becomes wavy in the terminal region if the spacing exceeds
log a = 0.5. Characteristic steady-state data such as the zero shear viscosity
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Effect of Spacing on Dynamic Data
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Fig. 5. The dynamic data are calculated from the spectra in Fig. 4. A slight waviness in G’
and G” can only be observed if the spacing is very large, log a=0.9.

n, and the recoverable compliance J? are not noticeably affected by the
discretization.

3.2 Discretization of relaxation-time spectra with abrupt cut-off

The self-similar relaxation of linear monodisperse polymers is given by a
BSW-spectrum with an abrupt cut-off at the longest relaxation time A_,,

[7].

0
H(\) = G( Ao
0 for A > A,

e A. —ng
+H(——) for A <A,
A

[

and M>M_ (13)

where G, n,, H, and A, are as defined earlier and A, is the longest
(cut-off) relaxation time which depends on the 3.4th-power of molar mass.
This spectrum will be discretized in the following case study.

Using experimental data, we can demonstrate the parallelism between
the continuous and the discrete BSW-spectrum. The dynamic data master
curve of a polyisoprene (PIP) standard with a molar mass of M,, = 305000
g mol~! and polydispersity of 1.05 is shown in Fig. 8. The corresponding
BSW-spectrum as shown in Fig. 9 excellently reproduces the dynamic data
in Fig. 8. The PM-modes, when divided by In a;, fall pretty much on the
BSW-spectrum. Note that the filled symbols in Fig. 9 represent the discrete
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Fig. 6. Deviations between the dynamic data calculated with the discretized spectra and the
curve calculated with the continuous spectrum: (a) storage modulus G’; (b) loss modulus
G".

Maxwell-modes (g;, A;) while the unfilled symbols are points on H(A)
which are calculated from the Maxwell-modes by dividing the relaxation
strength g, by the local spacing In a, (eqn. (9)). The discretization makes
the sudden cut-off at A, somewhat more gradual and an additional
(weak) Maxwell-mode with a longer relaxation time is needed. This broad-
ening of the spectrum is a discretization artifact which becomes more
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Effect of Spacing on the Relaxation Modulus

10

[Pa]

continuous spectrum

G
Y
=)

log a = 0.5

ORI S U {

RRLLLL INRELALLEL BRI UL i LRLLLY BEMRALL SRR RILL B RLL SRR LU BRI
—_ -2 0

10 10 10 10 10
t /A

Fig. 7. The relaxation modulus is calculated from the spectra in Fig. 4. The relaxation
modulus is insensitive to the spacing of the discrete relaxation times, except for long times
where the curves oscillate if the spacing exceeds log @ = 0.5.
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Fig. 8. Dynamic data of a polyisoprene standard synthesized at Polymer Labs. The molar
mass of the sample is M,, = 305000 g mol~! and the polydispersity M,, /M,, <1.05. The
solid line through the data points represents the fit of the continuous BSW-spectrum. The
dashed line is the fit of the discrete PM-spectrum. The spectrum was measured at several
temperatures and then shifted to the reference temperature of 26°C The rheometer was a

Rheometrics RDS 7700 with parallel disk fixtures.
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Fig. 9. Parallelism between the continuous BSW-spectrum and the discrete PM-spectrum.
According to eqn. (14) the relaxation time (A) of the discrete spectrum is shifted towards
shorter times compared with the continuous BSW-spectrum.

pronounced with extremely wide spacing. Keeping in mind that the sample

is not truly monodisperse, we also have to expect some weak modes with
longer relaxation times.

Discretization of a BSW—Spectrum
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Fig. 10. A typical continuous BSW-spectrum is discretized. The longest relaxation time
(cut-off time) is shifted towards shorter times depending on the spacing of the relaxation
times. The spacing is varied from log a = 0.1-0.9.
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The leading relaxation time of the discrete spectrum (neglecting the
weak Maxwell-mode due to broadening) is always shorter than the cut-off
relaxation time A, . This affects the properties of the discrete spectrum,
especially when modeling the terminal behavior. We shall study this shift in
the cut-off relaxation time in the following analysis. '

Following the procedure in the previous example (Section 3.1), a contin-
uous BSW-spectrum is discretized (eqn. (10)) repeatedly with five different
spacings (Fig. 10). We find that the leading relaxation time becomes
shorter and shorter as the spacing increases

Amax.dis 1

S (14)

max

We attribute this shift to our specific choice of discrete relaxation time
which is approximately the geometric average of its corresponding time
window in the continuous spectrum [A_,./a; A, ); the geometric average
for the boundary elements next to the cut-off becomes A, /Va as used in
the calculations. '

In the entanglement regime, all curves of G’ and G" which are calcu-
lated from the discrete spectra coincide with the dynamic data calculated
from the continuous spectrum (Fig. 11). However, the transition to the
terminal region is sharper if the spacing exceeds log a = 0.5, and the
terminal zone is affected.

Effect of Spacing on Dynamic Data
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Fig. 11. The dynamic moduli which are calculated from the spectra in Fig. 10 have the same
entanglement regime, while the transition to the terminal region is sharper for wide
spacings.



28 M. Baumgaertel and H.H. Winter / J. Non-Newtonian Fluid Mech. 44 (1992) 15-36

4. Approximation of the continuous spectrum from discrete PM-spectra

The interconversion of the spectra will be demonstrated for the broadly
distributed polymers. For that purpose, we consider a continuous spectrum
H(A), express it in dynamic moduli G', G” and determine the PM-modes
from this set of ‘data’. The PM-modes are then converted into a continuous
spectrum which should be identical with the initial H(A).

The relaxation times of discrete PM-spectra which are calculated from
dynamic data are spaced non-equidistant. The order of magnitude of the
spacing is about log a =0.8 which is fairly wide. Our objective is to
investigate how closely the PM recovers the original spectrum. Due to the
importance of this type of spectrum we also want to investigate the effect
of noise in the dynamic input data on the calculation of such spectra.
Additionally we would like to know how many data points per decade of
frequency are appropriate for the spectra determination.

4.1 Effect of noise in the dynamic data on the parsimonious spectra

We start out with the continuous spectrum of Fig. 4. The corresponding
set of dynamic data G’, G” is shown in Fig. 12 (solid lines). For the
purposes of this study, artificial random noise is added to the dynamic data.

Random Noise Added to Dynamic Data
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Fig. 12. Dynamic data from Fig. 5 with artificial random noise being added. The line
through the points represents the noiseless data. In this example the standard deviation due
to the noise is 0.01.
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Fig. 13. Comparison of the calculated discrete spectrum with the original continuous
spectrum in Fig. 4. Note that the recovery of the original spectrum is excellent. The
deviation of the shortest relaxation mode is an artifact since the frequency window of the
input data was limited from wA ,,, = 1073 to 107 which corresponds to a valid time window
of the spectrum from ¢_;,=107" to £, =103, A ..

The noise level which is characterized by the standard deviation, SD, .,
between the noisy data and the noise-free data

1 M
SD(G")nnise = \/7M——_——1_ (IOg Gi,:noisy — log i’:noise-free)2 ’ (15)
i=1

is varied from SD__, . = 0.0 (noise-free data), SD, ;. = 0.01 to SD,;. = 0.02.
The discrete PM-spectra, as calculated from these ‘data’ and adjusted for
the finite spacing (eqn. (9)), are plotted in Fig. 13. For reference, also
plotted are the original relaxation modes, g;, A;, of the noise-free data.
Note that the spacing of the relaxation times is not equidistant. Therefore,
the normalization-factor In a;, which shifts the discrete relaxation modes g;
onto the curve of H(A), varies depending on the local spacing. The original
spectrum is closely recovered by the PM even if the input data are
unrealistically noisy. The small offset at the shortest relaxation mode is an
expected artifact which is introduced by the cut-off at high frequencies in
the dynamic data which were used to determine the spectrum.

This is a very encouraging result which shows that the discrete and the
continuous forms of the spectrum are completely equivalent in their ability
to describe the linear viscoelastic behavior. The algorithm is insensitive.to
the noise in the input data.
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Fig. 14. Correlation between the standard deviation of the fit with the standard deviation of
the noise added to the data. The simple one-to-one correlation allows a very good
estimation of the scatter of the input data.

There seems to be a strong correlation between the closeness of the
PM-fit and the noise of the data, as shown in Fig. 14. The standard
deviation of the PM-fit '

PM flt(G" \/ lOg Gi,:PM-fn IOg Gl noxsy) (16)

z=]

is found to be proportional to the standard deviation due to noise, SD, ..
Obviously, the SD of the fit cannot be significantly smaller than the SD of
the noise of the dynamic input data. The simple one-to-one correlation
allows us to estimate the noise level of experimental data from the
standard deviation of the PM-fit.

4.2 Effect of data density on the determination of the PM-spectrum

For the experimentalist it is very important to know the minimum
number of dynamic data points per decade of frequency which is necessary
to still be able to recover the original spectrum accurately. To find this
lower limit of information, we proceed similarly as in Section 4.1. Noisy
dynamic input data (SD,;, = 0.003) are converted into PM-modes. The
number of data points per decade of frequency (data density) is now varied
in the range from 3 to 10. The resulting discrete spectra are shown in Fig.
15. Though the local spacing of the relaxation times depends somewhat on
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Fig. 15. The determination of the PM-spectrum is independent of thé number of dynamic
data points used as input. ‘

2

the data sets, the continuous spectrum, H(A), is recovered in every case.
Even a very low number (i.e. 3) of data points per decade is sufficient.
However, from experience we recommend the use of at least 5 data points
per decade of frequency to be on the safe side.

5. The parsimonious model (PM)

While working with relaxation spectra it became obvious that for every
G', G" data set there exists an intermediate spacing (intermediate value
for N per decade)

N perdecade=1/loga with a=4/[]aq - (17) -

i=1

at which the fitting is optimum [11). Below that value, the spectrum is to60
wavy and, above this value, the pattern of the Maxwell-modes becomes
erratic and inaccessible to analysis (ill-posed problem). This optimum
discrete spectrum is the parsimonious model (PM) of the material. Know-
ing the parallelism between continuous and discrete spectra, we can now
return to the PM and understand its origin.
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Fig. 16. A noiseless continuous spectrum is discretized (egn. (11) with parameters of PP-2 of
Fig. 2). The resulting standard deviation of the calculated G', G” curves with respect to the
G', G” curves which are calculated from the continuous spectrum decreases with narrowing
the spacing.

As a first step, we discretize a noiseless continuous spectrum (eqn. (11)
with B8 = 0.39) and determine the resulting standard deviation

1 M ‘
SDdisc(G”) = \/—M_—_—T Z (1Og Gi,:disc — log Gi,:cont)2 (18)
: i=1

in the loss modulus G”, and similarly for the storage modulus G'. The
deviation decreases with narrowing of the spacing (Fig. 16). At wide
spacings, the freely adjusting time constants give a somewhat better fit than
the equidistant spacing, a; = const. The better fit is due to the fact that
adjustable modes can shift to time scales where they are most needed. This

Fig. 17. (a) The standard deviation of the PM-fit of experimental data (i.e. polypropylene
data, sample: PP-2) decreases with a closer spacing of modes. This improvement comes to a
halt when the standard deviation of the fit reaches the noise level of the data. (b) All
spectra calculated for the polypropylene sample PP-2 fall onto the same continuous
spectrum, even if the spacing is extremely wide. The BSW-spectrum with stretched expo-
nential cut-off at A’ is plotted for comparison (eqn. (11) with g =0.39). (c) The local
deviations between fit and G’, G” data is shown for two of the discrete spectra of Figs. 17(a)
and 17(b), a wide spacing with N per decade = 0.7 and the optimum spacing with N per
decade = 1.2 (parsimonious spectrum). The deviations, A’ and A", for the parsimonious
spectrum are already dominated by the noise in the data.
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bonus vanishes at very narrow spacing. There, the fit becomes equally good
for adjustable and fixed A;, and the standard deviation continues to decay
as the modes are placed closer and closer together. Such a result is
completely expected when using a noiseless continuous spectrum as object
to the modeling. _

In the second step, we model real G', G" data of polypropylene PP-2.
Again, the standard deviation decreases when placing the modes closer and
closer together. This improvement comes to a halt when the standard
deviation of the fit reaches the noise level of the data (Fig. 17(a)).
Fortunately, this noise level is relatively low for many dynamical data sets
and the calculated spacing of the relaxation modes is narrow enough to
give a meaningful description of the intrinsic material time scales. The
parsimonious model is found. Note that even for very widely spaced
relaxation times, all modes fall onto the same continuous spectrum (Fig.
17(b)). The local deviations between fit and G', G” data are shown in Fig.
17(c) for two of the discrete spectra of Figs. 17(a)-17(b), a wide spacing
with N per decade = 0.7 and the optimum spacing with N per decade = 1.2
(PM-spectrum). The deviations, A’ and A", for the PM-spectrum are
already dominated by the noise in the data.

A further narrowing of the spacing would result in a fitting of the data
noise. The resulting Maxwell-modes would lose their material characteristic
pattern and the procedure would become meaningless in this context, even
if the standard deviation of the fit superficially improves. The problem can
be circumvented by smoothing the data before discretization. Such smooth-
ing is not addressed here, but the tools are available with the above
conversion of discrete to continuous spectra. The danger of smoothing is
that it introduces additional information which may lead to artifacts in the
interpretation.

6. Conclusions

The relaxation-time spectrum of viscoelastic materials can be described
interchangeably in the form of continuous or discrete spectra. The shape of
a spectrum is not altered by the discretization, even if the spacing between
neighboring relaxation times is not uniform. Comparing the discrete relax-
ation modes, g;, A;, with the continuous spectrum, H(A), one observes that
the relaxation strength of each discrete relaxation mode is shifted by‘a
factor which depends on the local spacing of the relaxation times. For the
case of spectra with sudden cut-off at A,,, a shift of the leading (cut-off)
relaxation time towards shorter times is observed due to the finite spacing.
An additional weak Maxwell-mode (with A slightly above A_,,) has to be
introduced for compensating this artifact.
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All spectra of this study are truncated at short times. This introduces
some errors at the short time limit of the spectra which will be analyzed in
a separate study.

Material functions which are calculated from discrete spectra are slightly
wavy. This waviness artifact is well below any practical importance if we use
about 1.5 or more relaxation times per decade. The lower limit of the
spacing between discrete modes is prescribed by the noise of the experi-
mental data. From experience with wide ranges of G, G" data, this limit is
given by 1.2-1.5 modes per decade, which is of the same order as the ideal
spacing according to this study. More modes are not needed but, if
attempted, they would require a smoothing of the data.

The calculation of the parsimonious spectrum is surprisingly insensitive
to data noise or variations in data density. This property is unusual for a
problem which is commonly recognized as being ill-posed. We conclude
that the problem of converting G”, G” data into a relaxation time spectrum
is only very weakly ill-posed due to the deliberate choice of taking a small
number of relaxation modes (parsimonious model). Increasing the number
of modes would cause ill-posedness. This transition towards ill-posedness is
outside the scope of this paper.

From a practical point of view, these findings are very encouraging, since
they allow the reduction of continuous spectra to a small set of discrete
relaxation modes as needed for model calculations and for material data
bases.

List of symbols

a spacing between neighboring equidistantly spaced relaxation times
a; spacing between neighboring relaxation times '

8; relaxation strength of discrete relaxation mode

G(t) relaxation modulus

G, equilibrium modulus

G'(w) storage modulus

G"(w) loss modulus

H()) continuous relaxation time spectrum

H(A;) point on the continuous relaxation time spectrum

J? recoverable compliance

M number of data points

n slope of BSW-spectrum in the entanglement regime
ng slope of spectrum in the glass transition regime

N number of discrete relaxation modes

SD .5 Standard deviation between the PM-fit and the dynamic data set
SD,,. standard deviation between the noisy and the noise-free data set
t time
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Greek letters

8(x) delta function; 8(x =0)=1 and 8(x #0) =0

A deviation between data point and calculated value

Mo zero shear viscosity

A relaxation time

A; discrete relaxation time

A  longest (cut-off) relaxation time of the BSW-spectrum

Amaxais longest relaxation time of the discretized BSW-spectrum

X characteristic cut-off relaxation time of the BSW-spectrum with
stretched exponential cut-off

A7 right boundary of the relaxation time window

AT left boundary of the relaxation time window

w frequency
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