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1. INTRODUCTION AND BACKGROUND

It is desirable to relate the molecular weight distribution and branchinyg
characteristics of commercial high density polyethylene (HDPE) to
viscoelasticity and processing behavior. A barrier to this goal is the limited
rheological experimental window, which frequently lacks terminal zone or
glass traasition information. To compound the problem, many of these
materials are characterized by time-temperature shift factors of approximately
unity. This incomplete linear viscoelastic picture prevents accurate calculation
of zero shear viscosity, which is of interest for parison stability, or the
viscosities at high shear rates seen in processing.

To propose a reasonable extrapolation it is necessary to be familiar with
the methods used to obtain discrete and continuous relaxation time spectra. It is
well known that the relaxation behavior of a polymer can be expressed as a
summation of discrete Maxwell modes such that
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Several methods for obtaining the set of g; and A; have been discussed by Orbey
and Dealy {1}.The parsimonious model, developed by Baumgaertel and Winter,
will be used in this study [2]. This method calculates the discrete relaxation
spectrum from the dynamic moduli. The moduli are defined in terms of the
discrete spectrum where
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The continuous relaxation spectrum, H(A), is normaily defined in
relation to G(t) such that
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Equations 2-4 and several numerical approximations of H(A) are presented in

detail by Ferry [3). Studies on the effectiveness of these approximatioas, which
rely on viscoelastic data as input, have shown them to be quite sensitive to
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smatl fluctuations in the input data [4-5}. Recently, it was shown [6] that this
problem is avoided when the continuous spectrum, H(}), is calculated from the
discrete relaxation spectrum using the relation

HQ) = ,—ng;-‘ v ()

where a; is a local spacing that can be approximated by

a; = B‘.‘l’ .
! \/ kiol
(6)

The discrete relaxation spectrum obtained fully describes the data in the
experimental window, but the continuous spectrum is an approximation subject
to error at large spacing values, a;. The end values of the continuous spectrum
also cannot be calculated accurately because Equation 6 cannot be evaluated.

We begin our analysis of this problem by quantifying the effects of
modeling flow behavior with a truncated data set. This allows us to define the
scope of the problem and provides valuable information regarding a reasonable
extrapolation. We then combine information from the rheology (truncated
dynamic data) and molecular weight information (GPC) to propose an
extrapolation.

2. EXPERIMENTAL

The truncation analysis and extrapolation technique were applied to
three commercial polyethylenes obtained from Exxon Chemical Corporation
and a polycarbonate acquired from General Electric. The material
characteristics for each of these samples are listed in Table 1. The molecular
weight information was obtained via GPC analysis. The latter two columns in
Tabie 1 represent parameters used in calculating H(A) and will be described

later in this work.
Dynamic mechanical testing of the HDPE samples was performed on a

Rheometrics RDS-7700 spectrometer. Paraile! plate geometry with plate
diameter of 25 millimeters was used. Strain levels were maintained below 20%,
the linear viscoelastic limit. The reference temperature for all HDPE
measurements and calculations is 150° C . Tangent delta for PE-1,PE-2, and
PE-3 are shown in Figure 1.

The commercial polycarbonate (PC-0) obtaiged from General Electric
was used for the truncation study and initial extrapolation attempt. It was
chosen for its polydispersity and wide experimental window. The dynamic data
for PC-0 has been previously reported [6]. Tangent deita for PC-0 is displayed
in Figure 2. All polycarbonate data and calculations correspond (0 a reference
temperature of 190° C. The vertical lines labeled 1-5 in Figure 2 represent



successive truncation points carresponding to PC-1,PC-2,PC-3,PC-4, and PC-S
respectively.

3. ANALYSIS

The results are presented in three categories: the effect of truncating the
polycarbonate on subsequent modeling, the extrapoiation of truncated
polycarbonates, and the extrapolation of the commercial polyethyienes.

3.1 TRUNCATION EFFECTS ON MODELING

While progress has been made in determining discrete relaxation
spectra from experimental data, the limitations to the use of such spectra in
modeling are not well understood. To study this problem, we chose a dynamic
data set for which ten decades of frequency were experimentatly accessible.
This dynamic data set (PC-0) was systematically truncated and discrete spectra
were calculated for each truncated set. Both the glass regime and the flow
regime were truncated.

Linear viscoelastic modeling of creep, start-up, step shear recovery, step
strain recovery, and viscosity was performed with the complete data set and the
truncated sets. The following shear flow relations were chosen because they
represent a broad class of linear viscoelastic experiments. A modified creep
equation was used for simplicity

N
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The expression in Equation 7 does not include the (.‘g + t/mg) term. Similarly,
the equation for start-up is modified such that

N
1
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For a liquid the (G,t) term is neglected. The step strain recovery expression
refers 1o the case where the strain has been stepped up to y, and then back down
to zero. It takes the foan
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For step shear recovery we use the relation
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In Equation 10, the quantity t* refers to the duration of the steady shear
experiment. The dynamic viscosity is given in terms of the previously defined
storage modulus and loss modulus

o - T an

Viscosity

Equation 11 was used in conjunction with the well known Cox-Merz tule to
predict viscosity curves. An explanation of Equations 7,8 and 11 can be found
in Ferry (3] while Equations 9-10 are developed by several authors [7-9]. To
allow comparison of these models, the error was plotted as a percentage such
that

Error ~ E = -Y"'Y—Y" (12)
[

The Y refers generically to the value (modulus, stress, or strain) being
calculated and the subscripts ¢ and t refer to complete data set and truncated
data set respectively. It was also necessary to define some measure of
truncation. The simplest definition is

Jogwy-logug

Truncation ~ T =
log wer - log weg

(13

where the subscripts 0 and { refer to the smallest and largest frequencies
measured. Truncation frequencies for each data set are listed in Table 2. The far
right columa gives the degree of truncation.

Tangent delta of the complete data set is shown in Figuce 2. The
viscosities plotted in Figure 3 correspond 10 a complete data set (PC-0 in Table
2), a data set with glass truncation (PC-6) and a data set with flow truncation.
(PC-5) Each spectra is consistent within the time window corresponding to its
inverse frequency window.

To show this correlation explicitly, we plot error versus time for PC-$
and PC-6. The error predicted from Equations 7-11 in conjunction'with 12 is
shown in Figures 4-5. The abrupt transition to 100% error occurs consistently at
the inverse of the truncation frequency (indicated by a vertical line) for all
models.

3.2 EXTRAPOLATION OF SYSTEMATICALLY TRUNCATED POLYCARBONATE

The information obtained from the truncated data set is combined with
GPC data to predict an extrapolation of the continuous relaxation time
spectrum. The specific form of the continuous spectrum for a polydisperse
material is arrived at through fitting a curve to the truncated spectrum of the
entanglement regime and predicting the glass transition behavior from the
monodisperse behavior.

It has been shown [10] that the coatinuous refaxation spectrum for a
monodisperse linear flexible polymer takes the form

_ [ HAM + HaAm AsMmax
H()\) - { . 0 b)‘max. (14)

The first term (H; A1) represeats the entanglement regime and the second term,

(H;AR2) represents the glass u;ansilion regime. The glass transition behavior is
independent of the molecular weight distribution and should be valid for
materials of any polydispersity. Values of the constants have been reported for
several polymers [11].

For a polydisperse linear polymer one can use a polynomial form for the
behavior in the flow regime. Analysis of several polydisperse materials
suggests that many broadly distributed materials can be represented by

A<Amax

, {,OLA»,BlogMcgogk)zl + Hphig M (15)
Muax

HQ) =

_ The parameters A, B, and C can be evaluated by means of a least squares fit to

the available data. ‘
In addition to proposing a form for H(A) in the entanglement regime it
is necessary to specify a cut-off longest relaxation time that determines the

‘terminal zone. For a monodisperse polymer we know [12-13]

M)“ | .

hax = k(ﬁ;

Values of A, and M, have been recorded in the literature [11]. We propose for
a polydisperse system that M ax 3pproximately equals PM,, such that ’

e = 1 (o, | an

where P is the polydispersity of the material M,, is the weight average
molecular weight. This approximation should be reasonable for gaussian type
molecular weight distributions.

It is assumed that the continuous spectrum of a polydisperse material
takes the form proposed in Equation 15. A discrete reléxalion spectrum is
calculated for the data set one wishes to extend and a continuous relaxation
spectrum is obtained using Equation 5. Then a least squares fit is performed to
obtain the parameters A,B, and C. These parameters aré then used to predict an
extended spectrum which is cut off at Ay, iccording to Equation 17.
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We utilize the polycarbonate data set shown in Figure 2 to test the
validity of Equations 15 and 17. In Figure 6, we plot log H(A) vs. log A of
PC-0. The glass is fit with a line and the entanglement region is fit with a
quadratic equation according to Equation 15 using the values of Hs, ny, P, and
M,, shown in Table 1. To test the ability of a truncated set to recover the same
parameters as the complete data set, we fit a quadratic equation to the truncated
sets PC-1 through PC-5. Table 3 lists the values of A,B, and C recovered for
each truncated set.

The parameters obtained from the truncated data set PC-5 ace used in
conjunction with Equations 5-6 to predict the complete curve for tangent deita
shown in Figure 7. The extrapolation of PC-5 is shown as a line while the
symbols indicate the original data points of PC-0.

The viscosity of the same extrapolated spectrum is plotted in Figure 8
and compared 10 the predicted viscosity of the complete data set. Agreement
between the two is easily within the realm of experimental error.

3.3 APPLICATION OF EXTRAPOLATION TO POLYDISPERSE HDPE RESINS

To extend this treatment to broadly distributed HDPE resins, we use
values of Hy and n, reported in the literature and values of P and M,, from
GPC (Tabie 1). The dynamic data obtained for these resins is converted to a
continuous relaxation spectrum and fit to Equation 15. The parameters obtained
are listed in Table 4.

The resuiting predictions for tangent deita are shown in Figure 9 along with the
original data sets.

The predictions for viscosity of the HDPE resins are shown in Figure
10. The flow regime extrapolation allows an estimate of zero shear viscosity
while the glass transition extrapolation extends the viscosity curve to rates
comparable to processing rates.

The available experimental data for HDPE caanot confirm the accuracy
of the value for Ap,,, predicted from Equation 17. Instead, a comparison is
made between the values of Ay, predicted from Equation 17 and the values
predicted from Equation 16 with M=M,,, where M, is estimated from GPC
distributions. The results of this analysis are given in Table 5.

4. DISCUSSION

Analysis of the truncation effects for the polycarbonate gives us a tool
10 evaluate the proposed extrapolation. In turn, the verified procedure for
polycarbonate can be applied to the HDPE materials.

4.1 TRUNCATION

We have demonstrated (via the viscosities plotted in Figure 3) the
reliability of the spectra calculation within the time window corresponding to
the inverse frequency window. The viscosity curves also illustrate the large
error in the zero shear viscosity when there is truncation in the flow regime.
Truncation in the glass regime has a similar effect on estimates of high shear
rate viscosity. In both cases, the truncation results in an underestimate of the
viscosity,

The effect of truncation is quite similar for a variety of linear
viscoelastic calculations as demonstrated in Figure 4. In the case of flow regime
truncation an abrupt transition to large error values occurs at approximately
1/wy for all of the calculated models.

The results for glass truncation (Figure 5) are not quite so consistent. It
can be seen that the error in prediction at 1/w, is quite large for creep and grows
quickly for start-up while each of the other models shows very little effect.
Thus one could predict step strain or step shear recovery outside the inverse
frequency window. While there is an appreciable percentage error at inverse
glass truncation frequency for creep modeling, the absolute values and hence
the absolute error is quite small.

4.2 POL.YCARBONATE EXTRAPOLATION

When performing the fit of the continuous relaxation spectrum as showr
in Figure 6, it is impartant 1o remember that the end points shouid not be
included in the fitting. As was mentioned in section 1, conversion of the
discrete spectra to the continuous spectra is not possible at the end points
according to Equation 6.

We see from Figures 7 and 8 that the extrapolation predicted from PC-5
is quite good, but not exact. We also note that the parameters listed in Table 3
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show some change with truncation. There are several sources of error to create
these minor discrepancies. [t is probabie that the quadratic form assumed for
the flow regime does not capture completely the experimental behavior. [n
addition, the prediction for the glassy behavior relies on monodisperse material
parameters. Any error in evaluating the monodisperse parameters is refiected
in the extrapolation.

The success of this modet with the polycarbonate sample can be traced
to the nature of the molecular weight distribution for this material. The
distribution has a simple gaussian form, which when transformed into time
domain behavior can be reasonably approximated with a three parameter
model. A more complex distribution would result in a continuous relaxation
spectrum that could not be approximated with such a simple equation. The
reasonable fit of the terminal zone in Figure 7 implies the success of Equation

17 for approximating Ay, .
4.3 HDPE EXTRAPOLATION

The discrepancies between the extrapolation and the actual data for the
HDPE samples PE-2 and PE-3 shown in Figure 9 can be attributed to the very
limited experimental data. After eliminating the end points of the continuous
spectrum from consideration, only 4 data points remain to fit the parameters
A,B, and C. As expected in this extreme case of truncation, the fit is not very
goad. :

We see from the fit of PE-1 in Figure 9, however, that one or two
additional decades of experimental data alleviate the problem of fitting the
curve. Thus only a little mare experimental information is required to find
success for these matenials.

By comparing values of A, listed in Table 5, we sce that Equation 17
becomes a poor approximation for distributions of a more strongly bimodal
nature (PE-2). For such distributions one shouid use Equation 16 with
M=Myyax-

5. CONCLUSIONS

Dynamic moduli in a frequency window [w,, we] can be successfully
used to model the linear viscoelastic behavior in the time window [1/wg, 1/w,).
In the case of glass truncation, it is evident that very little truncation error
occurs for modeling of step strain and step shear even outside the expected
window. Further work is necessary 10 generalize these results to a variety of
materials ranging from monadisperse to polydisperse.

In addition, this study of truncation effects has lead us 10 a reasonable
extrapolation procedure for polydisperse materials with simpie molecular
weight distributions. While this method cannot be applied to materials with
sharply bimodal distributions, it shows reasonable success for distributions of a
simpler nature.

In the case of HDPE sampiles, it is apparent that a slight improvement in
our ability to gather experimental results would be sufficient to allow use of the
extrapolation for PE-2 and PE-3. It is encouraging that the fit of PE-1 is quite
good despite the slightly bimodal nature of its molecular weight distribution.
This emphasizes the point that the finer details of molecuiar weight
distributions are not discernible in rheology and consequently a simple form of
the flow regime relaxation spectrum will suffice.
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TABLE . MATERIAL DATA

M P=M, M, | PM, | M [ H,

PC-0 1150000 2.4 3.6E+5 | -<acee -.80 417

PE-1 159000 | 14.5 2.3E+6 | 2.9E+6 | -.67 5.9

PE-2 1225000 | 35.1 7.9E+6 | 3.6E+6 | -.67 5.9

PE-3 1153000 ] 15.1 2.3E+6 | 2.9E+6 | -.67 5.9

TABLE 2. FREQUENCIES OF TRUNCATION
Wo=wrin W= tin =1/ tmaz=1/wg T

PC-0 § 3.548E-§ 2.691E6 3.716E-7 2.818E4 1.00
PC-1] 1.288E-4 2.691E6 3.716E-7 7.764E3 0.95
PC-2 | 1.288E-3 2.691E6 3.716E-7 7.764E2 0.86
PC-3 ] 1.230E-2 2.691E6 3.716E-7 8.130E1 0.77
PC-4 | 1.202E-1 2.691E6 3.716E-7 8.319 0.68
PC-5 | 1.202 2.691E6 3.716E-7 8.319E1 0.58
PC-6 | 3.548E-5 8.913E1 1.122E-2 2.818E4 0.59

TABLE 3. PARAMETERS OF QUADRATIC FIT OF POLYCARBONATE

A B C
PC-0 5.250 -.488 -.106
PC-1 5.254 -.468 -.107
PC-2 5.260 -.462 =111
PC-3 5.253 -.462 =111
PC-4 5.244 -.456 -.106
PC-5 5.234 -.449 -.102

TABLE 4. PARAMETERS OF QUADRATIC FIT OF HDPE

A B C
PE-1__ 13.769 -.669 075
PE-2__ |4.183 -.469 -079
, PE-3__ ]3.651 -.660 -.052

TABLE S. PREDICTIONS FOR LONGEST RELAXATION TIME

l.mL(Eqn 17) Eqn 16) |
PE-1 1.9E+3 4.2E+3
PE-2 1.3E+5 8.7E+3
PE-3 1.9E+3 4.2E+3
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