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Abstract

This is an account of 8 years of experience with the same computer-aided methods (IRIS program; http://
128.119.70.193/Lab/IRIS.html). The analysis of dynamical mechanical data consists of two main steps, conversion
from the frequency to the time domain and check for consistency. Both are equally important. The first step is pretty
much consolidated and some important progress can be reported with the second step which, however, has not
received the attention deserved. The quality of the input data determines the limits of the calculated results. The
analysis starts out with the postulate that there exists a continuous spectrum H(4) which then can be expressed in N
discrete modes to express G, G” data. The ‘sampling frequency’, N per decade, of the discrete representation cannot
exceed a value of about 1.5-2 because of the noise in the data. To conclude the analysis, the discrete modes are
converted into a continuous spectrum. The method of data analysis is outlined and characteristics of the solution are
explored. © 1997 Elsevier Science B.V.

Keywords: Kramers—Kronig relation; Parsimonious model; Rheology; Relaxation time spectrum; Retardation time
spectrum

1. Introduction

Macromolecules relax in a broad spectrum of relaxation times. The spectrum H(4) cannot be
measured directly but it has to be extracted from stress/strain data of linear viscoelastic
experiments. Major efforts have been undertaken worldwide for developing the best computer
algorithm for that purpose [1-13]. While confidence in these algorithms has increased, nearly all
the discussion has focused on the conversion methods themselves and not on the resultin
spectra. :

To appreciate the interest in the spectrum, it is important to realize that the time dependenc
of isochoric rheology is completely described by H(1), even at large strains or large strain rates
(where an additional strain dependent perturbation of the equation is, needed which is not
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addressed here). The shape of H(/) is often correlated with specific molecular architectures. The
spectrum’s sensitivity to small changes in molecular connectivity makes it a powerful tool to
distinguish small differences in otherwise indistinguishable materials. Systematic patterns have
been found in H(4) which are useful for developing polymers of novel molecular architecture or
for tailoring polymers to specific applications. Here it is especially important to avoid artefacts
in the interpretation.

Mechanical spectrometry has grown into a mature field, mostly through advances in rheome-
ter hardware combined with computer interfacing and data analysis. With ease, we can subject
samples to well defined transient stresses and/or strains and not only measure the response but
analyze it with interactive computer graphics. After that, we may simply use the data as
obtained or we can ask further questions concerning data quality, completeness of the data set
and limitations of applicability of the data. It is essential that these questions do not get
neglected when the ease of data processing might give a false impression of safety. The result of
such neglect could result in an over-interpretation of the data and a temptation to get drawn
into conclusions which, upon closer inspection, are based on artefacts. More advanced methods
have to be developed which not only convert data into some reduced parameter set but also
show the inherent limitations of the result.

2. Experimental

Dynamic mechanical data contain all the information needed for calculation of the relaxation
time spectrum, H(A). The storage modulus G'(w) and the loss modulus G"(w),
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are obtained from small amplitude oscillatory shear experiments over a sufficiently wide range
of frequencies, Wmin < ® < Wne, (3 decades or more). Solids have an additional time-independent
contribution, the equilibrium modulus G,.

There are several important reasons for choosing G’, G” experiments over other linear
viscoelastic experiments. These are:

(1) rapid development of quasi-steady state, in a time At~ 27 /w;

(ii) selective probing of relaxation modes near A =1/w;

(iii) no zero drift problem of the transducer;

(iv) G’ and G” data contain same information (different weighting);

(v) the Kramers—Kronig relation allows a consistency check on G’ and G” data;

(vi) the limitation of a finite time window (truncation problem, see [14]).

Other linear viscoelastic experiments have served as a source for determining H(4), notably
the relaxation modulus and the creep compliance. However, the information drawn from these
material functions is often limited because of the problem of ill-posedness [15—17]. While it has
not been possible to determine acceptable G’ and G” from G(¢) data, the opposite, determining
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G(¢) from G', G" data, is extremely accurate. With current rheometers, it might actually be
more accurate to determine G(t) from G’, G” data than to measure it directly in a step strain
experiment.

The quality of the G', G” data determines the outcome of the spectrum calculation. Three
groups of effects have to be considered: truncation, systematic errors, and statistical errors
(noise).

2.1. Truncation

The experimental frequency window, often extended by time-temperature superposition
(performed with IRIS automatically or interactively on the computer screen), determines the
relaxation time window, 1/@wmay <4 < 1/@gy, of the spectrum H(A) after completion of the
data evaluation. Consequences of truncation have been studied by Jackson et al. [14], and
they have been commented on quite frequently in the literature on modeling of viscoelastic
liquid flow.

Each material (including solids) has a finite longest relaxation time A,,, which often is
accessible by extending the experimental frequencies below 1/4,.. However, if this frequency
is outside the experimental range, the long time tail will be missing from the calculated H(A).
Attempts have been made to recover the long time tail by means of long time creep experi-
ments. However, this does not really lead to satisfying results because of the above men-
tioned problem of ill-posedness in the data analysis.

A corresponding truncation occurs at the high frequency end of the G’, G” data. The only
difference is that data are always truncated at the high frequency end since no lower limiting
value exists for A.

2.2. Systematic errors

Systematic errors are always present in the data but they are difficult to detect. An
exception is the type of systematic error which leads to a violation of the Kramers—Kronig
relation (see discussion below). Systematic errors might arise from various sources. Most
typical are calibration errors of instrument settings and geometry. Often, they come from
inconsistencies in the sample preparation, especially for polymers whose microstructures de-
pend strongly on sample history.

2.3. Statistical errors

These can be seen when smoothing the data and evaluating the variance around the
smooth curve. The proposed methods for H(A) calculation rely on data smoothing (filtering)
in one way or another. Differences arise from the type of smoothing. Our proposal (the
parsimonious model as discussed below) is to leave the data as they are and choose a fitting
which is too coarse to reproduce the noise in the data. The degree of coarseness is deter-
mined by the noise in the data, i.e. it does not have to be predecided in tHe algorithm.
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3. Desired properties of conversion algorithm

Each of the proposed methods in the literature has its strengths and weaknesses which should
be evaluated in a critical comparison. This would go much beyond the scope of this report.
However, we have tried to formulate basic criteria which an algorithm for determining H(A)
should satisfy. The choice of these is an expression of personal preference rather than objective
definition. Our preferences are the following.

1. Good fit of the experimental data.

2. Avoidance of overfitting. The algorithm should be able to find the optimum amount of detail
which can be extracted from experimental data without producing artefacts.

3. The format of H(4) should not be predetermined. It has to be freely adjustable during the
inversion of the data.

4. The resulting material parameters should have physical meaning.

Minimization of the truncation error. The data are always cut off on both sides of the

frequency scale. This truncation may be the source of substantial error [14].

6. Checking of experimental data quality. The data are always inconsistent to some degree since
the signal to noise ratios differs for G’ and G”. This may cause a substantial discrepancy
between fit and data which can be detected during data analysis.

7. For practical considerations, H(4) should be expressed by a function or a sum of functions
which can be integrated easily in the various linear viscoelastic model calculations. This leads
us to exponential functions for H(4).

8. For practical considerations, the number of parameters should be small (for ease of use in
modeling calculations and for strong material data in a data bank).

9. For practical considerations, the computation time should be short. All conversion methods
in the literature seem to satisfy this criterion, due to the high computation speed of desk top
computers.

These criteria go much beyond the traditional search for an acceptable fit of the data in a
reasonable time [18]. The algorithm is considered to be a basic tool for material characterization.
The calculated spectrum is not seen as an end in itself but as starting information for rheological
work. The applicability of the calculated spectrum and its consistency are prerequisites for a
viable conversion method.

“

4. Method of evaluating H(4) from G’, G" data

To begin with, we assume that for our sample there exists a unique continuous function H(4)
which describes its linear viscoelasticity. We further assume that H(A) is sufficiently smooth so
that it can be taken as linear within small time intervals [4;, 1;" ] around 4,. Our objective is to
determine this function (or a close approximation of this function) in the best possible way
according to the above criteria.

The computer algorithm for determining H (1) requires that we first discretize it. Since H(1)
is mostly used in its integrated form, we proposed the following simple way of discretization
[19]:
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with A, = In(A7 /A}) = In/ A1/ Ais1. A7 and 4] are the upper and lower time limits of the step
A, around 4. Note that A, is positive since Ai_1> A;+, due to the convention of starting with the
Jongest relaxation time, Amax = 4;. As we will see below, A, will be determined by the noise in the
data. This is an important observation since our spectrum will not be able to detect H(4)
variations which might occur at time scales smaller than A, :

The continuous spectrum can be completely reconstructed from the discrete modes if the
highest frequency in the wave representation of H(4) (Fourier series) is smaller than twice the
‘discretizing frequency’ [20]. This needs to be checked in each case, if possible. The discretizing
frequency is defined as the reciprocal mode spacing 1/A,. We will return to this criterion when
choosing the density of the discrete relaxation modes.

For simplicity, the step size A; could be chosen to be constant. In our calculations we treat A;
as a variable since this allows a closer fit of the data with fewer parameters. The discrete
spectrum of Eq. (3) corresponds to a discrete relaxation modulus:

G~ Go 3, HUA) A exp(— 1/4) @

i=1

Conventionally, this discrete relaxation is expressed as a sum of exponential decays (Maxwell
modes). )

G(6)— Go~ ¥, & exp(—t/A). )

i=1

Thus, the values of H at the discrete times A, are connected to the front factors of this multimode
viscoelastic material, g, by

gi=H(L) Ai. (6)

To calculate one from the other, one needs to know the step size A, which is provided from the
solution set 4,

The data set extends over a finite time window, 1/ << 1/Wpmie. Thus, only some finite
number N is accessible from all the possible Maxwell modes. This specifies the parameter set
which we plan to determine

g, A with i=1,2, 3,...,N.

Both, g; and A, are variable. The discrete spectrum expresses itself in discrete moduli:

N 1)
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which can fit any G’, G” data with a suitable choice of parameters g;, 4, with i=1,2,3,..., N.
The discretization does not introduce any loss of generality. Discrete spectrum and continuous
spectrum are equivalent. It is important to realize that the discretization does not compromise
the results in any way. ’
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For an experiment with M data points, [wy, G'(@x), G"(we)] With k=1,2,3,..., M, the
deviation between fit, Eqgs. (7) and (8), and data points may be expressed as a standard deviation
S.D. with

1 1 ¥ glod) ]2 [ 1 Y gw :r
SD2 =-— I:l - ! : -+ 1— - . 9
.2 | Tl 2T + (o) @0 L T+ @) ®)

Minimization of S.D. (for constant N) results in a parameter set g;, 4, for the best fit. Our fitting
program first places a large number of Maxwell modes, g;o, 40, €venly over the frequency range
of the data, including an additional frequency decade on both sides. The modes can be
calculated directly by solving a system of algebraic equations. A nonlinear fit follows in which
g, A; and N are optimized to obtain the best fit of the data with a minimum number of modes.

The right choice of N is essential for the success of the algorithm. For small values of N, the
spectrum is too coarse and model calculations with the spectrum appear wavy. The waviness
and the deviation between fit and data decreases as we take more and more modes. This is
documented in Fig. 1 where the minimized standard deviation S.D. (¢ S.D./dg; =0 S.D./04;=0)
decreases as N is allowed to grow. The noise in the data sets a natural limit to this improvement
since the fit cannot be better than the standard deviation due to the noise. Taking more modes
is not meaningful for two reasons: (a) the fitting does not improve significantly with these extra
modes; (b) the values of all g; start jumping erratically. ‘

The S.D. curve basically consists of two arms, the steep one for improved fit of the sample
parameters to G, G” data, and the flat one for fitting the noise in the data. The crossover
between these two regions is where we suggest to place N, i.e. the value of N depends on the
noise level in the data. The resulting relaxation time spectrum has been termed the parsimonious
spectrum [19] since it attempts the best fit with the fewest number of parameters.

The avoidance of over-fitting as described above is a well known process in control theory
when modeling system behavior. Also, as we learned recently from Dr. Russell Davies,
Aberystwyth, our findings are an example of the well established Morosov Discrepancy Principle
[21] which expresses the fact that the fitting of data cannot be better than the S.D. in the data.
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Fig. 1. The standard deviation between the best possible fit and data improves when the number of Maxwell modes,
N, increases, Here the density of modes is defined as total number of modes divided by the number of decades in
frequency of the experimental data input. The steep part of the curve describes the improved fitting of the real
material behavior. The flat part of the curve describes the fitting of the noise in the data (from Ref. [19]).
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Higher discretizing frequencies will reconstruct the high frequency variations (noise) in the
data [20]. It would be possible to use higher discretizing frequencies and avoid noise reconstruc-
tion by introducing additional smoothing assumptions. These assumptions, however, can easily
produce artefacts that are difficult to identify. We purposely avoid this phenomenon with the
parsimonious modeling. .

As the last step, the parsimonious spectrum needs to be converted back into the continuous
spectrum with points H(/4;) = g;/A, on the continuous line H(1).

The above result has been achieved without any manipulation of the data (such as smoothing)
and it expresses the data with a minimum of parameters and within the S.D. of the data. It is
extracting the information from the data to the fullest extent but it also avoids over-interpreta-
tion of the data which would lead to unacceptable artefacts.

S. Properties of the solution

Having completed the solution procedure, we are ready to explore the properties of the
solution algorithm. This exploration is the most interesting part of the working on a computer
algorithm since it most likely leads to unexpected results which call for explanation, as in a real
experiment. We start out by searching for general trends in the behavior of the algorithm, then
try to abstract these trends into general statements (‘rules’), and check the limits at which they
start to fail. Some of these properties will be discussed in the next paragraphs and often it will
become clear that our observations need more rigorous proof before they will be acceptable in
a more general context.

5.1. Ill-posedness

The inversion of a single integral equation such as Eq. (1) for ¢’ (or Eq. (2) for G”) is known
to be an ill-posed problem [15,17]. Little is known about the simultaneous inversion of two
interrelated integrals. A surprising observation, contrary to statements in the literature, was that
the typical characteristics of ill-posedness completely vanished when simultaneously performing
the above inversion on both integrals for G’ and G”. This lack of ill-posedness is most valuable
for our purposes of finding the spectrum. Standard solution methods for ill-posed problems,
such as Tikhonov regularization, are not needed here.

In analogy to the above observation, we can speculate that the simultaneous inversion of the
relaxation modulus and the creep compliance might allow determination of the relaxation time
spectra without encountering the problem of ill-posedness.

A frequently repeated statement, which might go back to Tanner [15], suggests that ill-posed-
ness can be avoided with discrete relaxation spectra by keeping N small. Our algorithm also
becomes more robust when reducing N. However, robustness does not seem to be our problem
since the algorithm behaved in a well-posed way up to a high value of N as long as we worked
with artificially smoothed data (smoothing for testing purposes only) ((19]). An upper limit
occurred naturally at very high NV at which the modes are so dense that rounding errors become
important in the minimization procedure. The conclusion from our testing was that it is not any
ill-posedness which creates an upper limit on N, but it is the noise in the data. This property has
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been merely observed as an interesting and useful phenomenon, without trying to find any
analytical proof.

5.2. Uniqueness

Several observations lead us to believe that the parsimonious spectrum poses a ‘unique’
solution to the problem (within experimental error). This is not obvious when only looking at
the table of N discrete values g, 4, and at variations in this table when changing the
conditions of inversion. One needs to transform the discrete spectra g, 4, into- continuous
form to see that, indeed, various very different looking discrete spectra reduce to the same
continuous function H(A). In that sense, we call the discrete solutions unique since they are all
equivalent representations of H. The various observations entail the following:

(i) the starting set g;o, 4,0 does not affect the final parsimonious spectrum;

(i) random omission of several data points from the experimental input does not change the

calculated continuous H(4);

(iii) addition of some artificial, random noise to the data does not affect the calculated

continuous H(4) provided that we maintain about the same overall noise level. .

In addition to these observations on real data, we produced artificial G', G ‘data’ from a
known spectrum H(4). From these we calculated H(1), as described above, and always returned
to the original spectrum [5,19]. This is an important test which needs to be satisfied by a
conversion algorithm before considering it further.

The uniqueness of the parsimonious spectrum should be explored further, especially since
most specialists in this field seem to claim non-uniqueness. It will be necessary to show
uniqueness before further physical conclusions can be drawn from any experimental spectrum.

5.3. Weighting

The solution for the spectrum strongly depends on the weighting of the deviations in the
definition of the S.D. We have used relative deviations, i.e. deviations between each experi-
mental data point and its corresponding calculated data point divided by its absolute value.
One can understand this as deviations on a logarithmic scale. This logarithmic scaling is
necessary since the G', G” values may vary over several decades. This had been recognized
earlier [2] but does not seem to be generally known. Other weighting functions have been used
in the literature but they cannot be recommended when analyzing data over a wide frequency
window.

5.4. Negative g; values

The possibility of negative g, values for some of the modes of Eq. (5) has been considered
in the literature ([22,23] ). We have encountered such ‘negtive modes’ when modeling the
noise in the G', G” data. Smoothing of the data (for testing purposes) suppresses the occur-
rences of negative g; values. We therefore assumed that negative g; values were an artefact due
to imperfection in the data. However, this working hypothesis needs to be substantiated
further.
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6. Computer aided consistency tests

The newly determined H(1) may be used in-any of the linear viscoelastic material func-
tions ([24]) and the result should be consistent with other experimental observations and with
theory. The most obvious tests are:

plotting of G’, G” data against calculated G', G" (from H(1));

plotting of deviations between the above functions vs. frequency;

plotting of relaxation modulus (from H(4));

plotting of creep compliance (from H(1));

All of these tasks are assigned to the computer (standard IRIS software) and the result is
presented in interactive graphics mode. Specific tests are discussed in the following.

6.1. Kramers—Kronig relation

The storage modulus G’ and the loss modulus G” are not independent of each other. They
are interrelated by the Kramers—Kronig relation,;

G'(CL))_EJ‘Go G"(x)
0 =

Ll (10)
which has been described by Booij et al. [25] and by Bird et al. [26]. This relation is difficult

to apply to experimental data since the low and high frequency tails extend beyond the data
range. This is where discretization helps. The discrete form of Eq. (10)
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It can be shown by the function in the bracket is equal to zero for any 4. This means that
each individual Maxwell mode g, 4, satisfies the Kramers—Kronig relation. The equilibrium
modulus G, is included in these calculations as a Maxwell mode with infinitely long relax-
ation time. The conclusion is that the discrete relaxation modulus, Eq. (5), will always satisfy
the Kramers—Kronig relation.

This is a result which has far reaching implications for the evaluation of dynamic me-
- chanical experiments. The spectrum calculation assessed in the above way tells us when a
data set went wrong. If the computer algorithm is not able to fit a given set of G', G” data,
then this is reason to assume that the data set violates the Kramers—Kronig relation. Such
violation can happen for various expenmental reasons. We have used this criterion effectively
for detecting faulty data sets. This is one of the greatest strengths of the parsimonious
spectrum.
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BSW and calc. PM spectra
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Fig. 2. Three BSW spectra (continuous lines), as in Baumgirtel et al. [32], have been used to calculate G', G” values
over a sufficiently wide frequency window. From these G', G" values, we calculated spectra according to the
parsimonious model (PM) method. The discrete points represent the solution. The input BSW spectrum has been
recovered. Deviations arise from the sudden cut-off at 4, and from truncation at short times. The BSW parameters
were taken from Jackson et al. [28]. The discrete spectrum was calculated by M. Mours with the IRIS program.

6.2. Recovery of a known spectrum

The parsimonious spectrum has been calculated repeatedly for a wide range of different
prescribed spectra, and the results were always consistent. Several of these tests have been
published: 5-mode spectrum ([5]); 2-mode spectrum [S]; continuous spectra of three polypropy-
lene melts ([19]); noisy spectrum ([19]). In another test, we prescribed a continuous spectrum of
a polybutadiene melt [27],

H(A) = mG% [(%) 4 < /Lj )m] for A < A, (13)

calculated G’ and G” from that spectrum, and used them as a data set for testing the computer
algorithm. The result shown as discrete points in Fig. 2 fits the prescribed spectrum very closely.
Obviously, the sudden cut-off of the continuous spectrum can not be exactly reproduced with
the discrete spectrum. This is a known property of discrete algorithms.

6.3. Prediction of other viscoelastic functions

Prediction based on the measured H(A) and comparison with experiment has to give
consistent agreement. For instance, the limiting zero shear rate properties of viscosity and first
normal stress coefficient are given by '

%

max max
’70=J H(A)dA and¢1=2J H(A)A dA. (14)

0 0
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It is possible to model complicated transient experiments, as shown by Laun [2]. For example,
in a stress growth and relaxation experiment a material is sheared initially with a constant strain
rate, yo, for a time t,. The strain is then kept at a constant value. During this experiment the
stress is recorded. In the linear viscoelastic region the stress response during the initial shear
0<t<t, is given by

() = %o l:Got + ,_Zl g1 — e“"“)] ) (15)
and first normal stress difference

Ni(t) =73 {Goﬁ +2 ﬁ, gAHl — (1 +H4) e""‘]} , (16)
and during stress relaxation (¢ > t,)

() = o {Gozg, + -i gAfe ¢ 4{:‘"]} , 17

Ni(t) =32 {Got% +2 f;l gA2[1 — (1 + to/A;) 74 e‘(""’)“’} . (18)

These predictions have been compared with experimental shear stress data of a liquid, a gel and
a rubbery solid and the agreement was found to be acceptable [28].

A second very common experiment involves creep and recovery. Here the material is initially
sheared under a constant stress, 7,, for a time #, and the strain response is measured. In the
linear viscoelastic region the strain response during initial shear, 0 <t <, is given by

N-—1
y(1) =16 (Je +ifno+ 3 Jidl—e” ”A")) ; (19)
and during recovery (¢ > t)
N-1
() =10 {to/'lo + Y Jlem ¢TI C_"A‘]} : Q0
iml

The retardation modes j, A, for i=1,2,3,...,(N—1) can be determined from the
relaxation spectrum [29]. These predictions agree well with experimental data [28]. ‘

Such modeling calculations are often useful for real applications. Instead of purchasmg a
creep rheometer one could, for instance, stay with the G’, G” measurement and calculate the
creep behavior (the retardation spectrum for describing creep is fully determined by H(A) as
shown by Gross [29]; see also Ref. [5]).

6.4. Onset of non-linearity

The relaxation time spectrum is also needed for calculating the stress at large strains. The
most widely used model is that of Wagner [30] in which the stress is described by

(1) = J‘ 2 i o—=ihipp yCri () dr. o g @D

@ im] t
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Wagner’s damping function /4 (I, II) depends on the invariants of the Finger strain tensor,
C; (), between an instant ¢ in the past and the current time ¢. The invariants, I and II, are
a measure of stretching of material lines and planes, respectively, between ¢’ and ¢ [31]. The
onset of non-linearity is directly seen on the computer screen when plotting model calculations
of start-up of shear or extension (from H(4)) for comparison with experiment. The IRIS
computer algorithm is designed for that purpose.

7. Conclusions

A robust procedure has been found for the calculation of relaxation time spectra H(A) from
linear viscoelastic data G’, G”, within the accuracy of the experiment. The same solution
algorithm has been successfully used by us and others for 8 years. We prefer a most simple and
transparent method of data analysis in order to avoid introduction of artefacts during the data
conversion. The solution satisfies most of the chosen initial criteria.

(1) A close fitting of the data is very easy to achieve with a discrete function having narrow
enough spacing between discrete relaxation modes. The fit of the data has always been close
provided that the data satisfy the Kramers—Kronig relation.

(2) Over-fitting is avoided with the parsimonious model. We do not attempt a ‘best fit’, but
a fit within the variance of the data. Other discrete spectra with a smaller standard deviation
could be chosen. However, we do not accept this ‘best fit’ because of the artefacts which it
would predict (violation of the Morozov discrepancy principle).

(3) All parameters in the set (g, A, N) are freely adjustable during the minimization of S.D.
The choice of Maxwell modes does not introduce any loss of generality and, hence, does not
prescribe a specific form of the solution. Only if N is chosen to be too large (over-fitting) do
assumptions have to be introduced about the solution. To avoid this, the average number of
modes per decade, N per decade, should not exceed 1.5-2.

(4) The discrete values of g;, 4; of individual modes are not meaningful by themselves. They
actually are replacable by other (g;, 4, N) sets under different evaluation conditions. However,
the continuous H(1) spectrum obtained from (g, 4, N) certainly is a meaningful representation
of the macromolecular dynamics in a sample.

(5) The truncation error is relatively small because of the localized weight of exponential
functions. However, it is still the most severe problem in the H(A) determination.

(6) The checking of data quality and limitations is an ongoing process. Several methods are
available but more work is needed here. Interactive graphics combined with constitutive
modeling help in this evaluation.

(7) The exponential functions are tractable in all the integrals which arise during any
modeling. ‘

(8) The number of parameters is naturally large for discrete representations. The parsimo-
nious model searches for the minimum set within that framework.

(9) The spectrum calculation need only a few minutes on a conventional PC. The computa-
tion time increases with the width of the frequency window and is lower for higher quality data.

Good data over a sufficiently wide frequency window and at a high signal to noise ratio
always give a meaningful H(4), i.e. the most severe limitations in the entire process arise from
the actual measurement of G’, G”. \
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Our current concerns are mostly with the evaluation of the solution and the estimation of
its limits. The new generation of computer-aided methods in rheometry not .only provides
tools for analyzing but also attempts to evaluate the validity of experimental data. The very
useful Kramers—Kronig check on the experimental data is an example. Another example is
the parsimonious model which prevents over-fitting of the data. More work is needed in the
estimation of the truncation error.

The mode density, N/decade, has to be chosen such that it satisfies the Morozov Dis-
crepancy Principle and the Nyquist Theorem. The Morozov Discrepancy Principle gives an
upper limit of N beyond which the data fitting becomes physically meaningless. We define
this limit by the mode density at the transition from material fitting to noise fitting (marked
as ‘parsimonious spectrum’ in Fig. 1). The Nyquist Theorem requires that this characteristic
mode density ( = discretizing frequency) is at least twice as high as the highest frequency in
the wave representation of H(A). This normally is satisfied since (1) good experiments give
reasonably high values for the characteristic mode density, and (2) the spectrum H(4) is a
very gradually changing function (for most materials).

The general properties of the solution for H(Z) are known, but they are still puzzling in
many respects. The following features have been deduced from computer ‘experimental’
observations:

the crossover from material dominated to noise dominated fitting leads to the definition of
the parsimonious spectrum: :

the resolution of detail in the spectrum is given by the time step A; which, in turn,
depends on the quality of the experimental data; wave forms of H(A) with frequencies higher
than 1/A; cannot be resolved,;

the simultaneous inversion of two integrals suppresses the symptoms of ill-posed behavior;

the Kramers—Kronig relation allows a consistency check of data;

the solution H(A) is ‘unique’ (within experimental error and truncation error).

These factors should be analyzed further to come to a deeper understanding of why the
solution works in the observed manner and where its limitations are.

Even with these unknowns, the parsimonious model has become a basic tool for the study
of polymeric materials. One example is its application to G', G" data of polystyrene stan-
dards which led to the finding of the universal spectrum for linear flexible polymers of.
uniform length [32]. The time has come for shifting the discussion away from the methods of
determining H(A) and to the analysis of the spectrum ftself.

Acknowledgements

The above ideas have developed during many discussions over years of collaboration with
M. Baumgirtel, J. Jackson, M. DeRosa, F. Chambon, M. Mours, W. Wedler, P. Soskey and
the other members of my research group. Much of this research was supported by General
Electric and by the Materials Science and Engineering Center at the Umver51ty of Massachu-
setts.



238 H. Henning Winter [ J. Non-Newtonian Fluid Mech. 68 (1997) 225-239
References

[1}] K. Ninomiya, Effects of blending on the stress-relaxation behavior of polyvinyl acetate in the rubbery region, J.
Colloid Sci., 14 (1959) 49. ,
[2]1 H.M. Laun, Description of the non-linear shear behavior of a low density polyethylene melts by means of an
experimentally determined strain dependent memory function, Rheol. Acta, 17 (1978) 1.
3] SW. Provencher, A constrained regularization method for inverting data represen’fed by linear algebraic or
integral equations, Comput. Phys. Commun., 27 (1982) 213-227.
{4] S.W. Provencher, Contin: A general purpose constrained regularization program for inverting noisy linear
algebraic and integral equations, Comput. Phys. Commun., 27 (1982) 229-242.
51 M. Baumgirtel and H.H. Winter, Determination of the discrete relaxation and retardation time spectra from
dynamic mechanical data, Rheol. Acta, 28 (1989) 511.
{6] V.M. Kamath and M.R. Mackley, The determination of polymer relaxation moduli and memory functions using
integral transforms, J. Non-Newtonian Fluid Mech., 32 (1989) 119-144.
{7} J. Honkerkamp and J. Weese, Determination of the relaxation spectrum by a regularization method, Macro-
molecules, 22 (1989) 4372-4377. :
[8] J. Honerkamp and J. Weese, Tikhonovs regularization method for ill-posed problems: A comparison of different
methods for the determination of the regularization parameter, Continuum Mech. Thermodyn., 2 (1990) 17-30.
[9] J.C. Elster, J. Honerkamp and J. Weese, Using regularization methods for the determination of relaxation and
retardation spectra of polymeric liquids, Rheol. Acta, 31 (1992) 161-174.
[10] N.W. Tschoegl and 1. Emri, Generating line spectra from experimental responses. Part III. Interconversion
between relaxation and retardation behavior, Int. J. Polym. Mater., 18 (1992) 117-127.
[11] N.W. Tschoegl and 1. Emri, Generating line spectra from experimental responses. Part II. Storage and loss
functions, Rheol. Acta, 32 (1993) 322-327.
[12] D.W. Mead, Numerical interconversion of linear viscoelastic material functions, J. Rheology 38 (1994)
1769-1793.
[13] C. Friedrich, H. Braun and J. Weese, Determination of relaxation time spectra by analytical inversion using a
linear viscoelastic model with fractional derivatives, Polym. Eng. Sci., 35 (1995) 1661-1669.
[14] J.K. Jackson, C.- Garcia-Franco and H.H. Winter, Modeling linear viscoelastic behavior with a truncated
relaxation time spectrum, Ann. Tech. Meet. Soc. Plastics Eng. (ANTEC) 2438-2442, 1992.
[15] R.I. Tanner, Note on the iterative calculation of relaxation spectra, J. Appl. Polym. Sci., 12 (1968) 1649-1652.
{16] D.R. Wiff and M. Gehatia, Inferring mechanical relaxation spectra as an ill-posed problem, J. Appl. Phys., 46
(1975) 4231-4239.
[17] J. Honerkamp, 11l posed problems in rheology, Rheol. Acta, 28 (1989) 363-371.
[18] N. Orbey and J.M. Dealy, Determination of the relaxation spectrum from oscillatory shear data, J. Rheology,
35 (1991) 1035-1049.
[191 M. Baumgirtel and H.H. Winter, Interrelation between continuous and discrete relaxation time spectra, J.
Non-Newtonian Fluid Mech., 44 (1992) 15-36. ,
[20] H. Nyquist, Certain topics in telegraph transmission theory, Trans Am. Inst. Elect. Eng., 47 (1928) 617-644.
[21] V.A. Morozov, Methods for Solving Incorrectly Posed Problems, Springer, Berlin, 1984.
[22] F. Akyildiz, R.S. Jones and K. Walters, On the spring-dashpot representation of linear viscoelastic behavior,
Rheol. Acta, 29 (1990) 482-484.
[23] A.N. Beris and B.J. Edwards, On the admissibility criteria for linear viscoelasticity kernels, Rheol. Acta, 32
(1993) 505-510.
[24] J.D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 1980.
[25] H.C. Booij and G.P.J.M. Thoone, Generalization of Kramers—Kronig transforms and some approximations of
"7 relations between viscoelastic quantities, Rheol. Acta, 21 (1982) 15-24.
[26] R.B. Bird, R.C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol. 1, John Wiley & Sons, New
York, 1987.
[27] J. Jackson, M. DeRosa and H.H. Winter, Molecular weight dependence of relaxation time spectra for the
entanglement and flow behavior of monodisperse linear flexible polymers, Macromolecules, 27 (1994) 2426.



H. Henning Winter /J. Non-Newtonian Fluid Mech. 68 (1997) 225-239 239

[28] H.H. Winter, M. Baumgirtel and S. Soskey, A parsimonious model for viscoelastic liquids and solids, in A.A.
Collyer (Ed.), Techniques in Rheological Measurement, Chapman & Hall, London, 1993.

[29] B. Gross, Mathematical Structure of the Theories of Viscoelasticity, Hermann, Paris, 1953.

[30] M. Wagner, Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a
low-density branched polyethylene melt, Rheol. Acta, 15 (1976) 136-142.

[31] H.H. Winter, On network models of molten polymers: loss of junctions due to stretching of material planes,
Rheol. Acta, 17 (1978) 589-594.

[32] M. Baumgirtel, A. Schausberger and H.H. Winter, The relaxation of polymers with linear flexible chains of
uniform length, Rheol. Acta, 29 (1990) 400--408. '



