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5.1 Introduction

We all have bounced balls and can remember differences between the bouncing
of balls for soccer, basketball, tennis, golf, or billiards. Balls bounce differently
when thrown hard at a surface or when just dropped. Bouncing is an informative
experiment but not very controlled in its course. Mechanical spectroscopy (MS)
can be viewed as a sophisticated bouncing experiment in which a material sample,
most commonly in the shape of a small disk or a rectangular sheet, is deformed
under a periodic load. The material can be elastic (like the bouncing ball), but
the test also applies to viscous fluids because deformation and restoration of the.
original shape are both prescribed by the experiment.

Mechanical spectroscopy is able to probe the dynamics of relaxation processes
for liquids and solids in their equilibrium state. The applied stress or strain needs
to be small enough so that perturbations of the equilibrium structure can safely be
neglected.

Relaxation processes in polymers occur on a wide range of time scales. Fast
dynamics is associated with small-scale relaxation processes (small molecules,
molecular strands, subunits of molecules) and, vice versa, slow dynamics belongs
to macromolecular motions or long-range correlation of supermolecular motions
(physical aggregation, for instance). To appreciate the wide interest in MS, it is.
important to realize that the time dependence of isochoric rheology is completely
described by a single material function, the relaxation time spectrum H (1), and that
MS is the most advanced method of determining H()). The shape of H(A) is often
correlated with specific molecular architectures. The spectrum'’s sensitivity to small
changes in molecular connectivity makes it a powerful tool to distinguish small dif-
ferences in otherwise undistinguishable materials. Systematic patterns have been
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found in H(A) that are useful for developing polymers of novel molecular architec-
ture or for tailoring polymers to specific applications. Recent successes include dis-
coveries of the relaxation time spectrum of the critical gel (polymer at its gel point)
and of the spectrum of long, linear, flexible molecules of uniform molecular weight.

Mechanical spectroscopy is a mature experimental technique. Excellent com-
mercial instruments are available for measuring the necessary data to determine
H(A), and computer methods are readily available to analyze the data. However,
the high sensitivity of the experiment makes it prone to artifacts. It is necessary to
understand MS to gain full access to its potential.

5.1.1 RHEOLOGY OF THE EQUILIBRIUM STATE

Before proceeding, several basic viscoelastic parameters of polymeric liquids and
solids need to be defined. This can be done most easily with the stress relax-
ation experiment (Figure 5.1) in which a small shear strain y, is imposed on an

)
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stress T(t)

0 time t
Figure 5.1 'Dynamics of the stress relaxation experiment. A finite strain yp is applied
" rapidly by shearing during a short time interval A¢. The resulting stress r(r)
is measured over a long time.
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equilibrated material sample while the shear stress response as a function of time
is measured. The stress in the sample rises when yp is applied at the beginning
of the experiment, but then it relaxes as yp is kept constant. Instead of plotting
the decaying shear stress v(t) (Figure 5.1), one most commonly plots the ratio
of stress and strain, called the relaxation modulus G(¢, yv). Data are shown for a
polyethylene melt in Figure 5.2. Stress relaxation data at very small strain (lincar
viscoelastic limit) collapse into a single time function

&) =t/ ‘ M

represented by the top curve in Figure 5.2. The linear relaxatlon modulus G(t) is
independent of the applied strain.

The dynamics of the equilibrium state has significance for the nonequilib-
rium state (large strain). For a polymeric liquid, as shown laere, Einaga et al. {2]
discovered that large shear strains cause the time function G(¢) to shift vertically
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Figure 5.2 Strain dependence of the relaxation modulus (o?(r) of a molten polyethylene.
Data replotted from [1]. The top line represents the relaxation modulus calcu-
lated from the spectrum. The other lines were shifted vertically to obtain the
best possible fit for each experimental data set.




498 M. Mour§ and H. H. Winter

to lower values

G(t, w) = Gty h(w). @

however, without changing its shape: time effects and strain effects can be ex-
pressed as a product of two separate functions. Many materials have been found to
exhibit this phenomenon (when probed at long time scales [3]). This observation
has important consequences for the modeling of molecular dynamics. The magni-
tude of the shift h(y) describes the effect of large strains {4, 5). This chapter will
only discuss the small strain behavior, i.¢., the viscoelasticity of the equilibrium
state.

Rheological experiments are quite limited in the range of time scales they
can access at once. The polyethylene melt (Figure 5.2) was probed at relatively
large time scales at which all its short modes had already relaxed. A more com-
plete relaxation modulus would include glassy modes, as shown schematically in
Figure 5.3, in which curve (a) represents a typical polymer melt. Distinct regions
can be identified that are characterized by their own molecular dynamics. At very
short times, the polymer can only relax on a very small scale. It is in its glassy
state. Given more time, a gradual transition (glass transition) occurs towards the

A p glass
109 —<

G(t)

.- glass transition

, rubber or rubber-like
106

©

(2) (b)

logt

Figure 5.3 Schematic of the relaxation modulus of polymer melts (a), polymer critical
gels (b), and solid polymers (c). The critical gel is the material at the transition
from liquid to solid.
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rubbery state. For polymer melts, the time scale of rubbery behavior is called the
entanglement region. At even longer times, the polymer melt, curve (a), has time
to flow. The flow region is also called the terminal region because no longer time
scales beyond Ame are present in the polymer.

5.1.2 SOLIDS VERSUS LIQUIDS

The relaxation modulus is defined for liquids and for solids. The stress of the
polymeric liquid of Figure 5.2 relaxes to zero, as is typical for a liquid. In the case
of a solid (curve (c) in Figure 5.3), the stress can only decay to a finite value that
corresponds to the equilibrium modulus G.. The nonrelaxing stress contributions
of a solid in the preceding stress relaxation experiment would be

lim r = GeWo 3)

1-+00

Even solids have transient relaxation modes. The longest relaxation time of these
modes is finite. In this chapter on MS, we are mostly concerned with transient
stress contributions G(¢) — G. and treat G, as an independent material parameter,
which is zero for liquids and finite for solids.

An ideal solid would show no stress relaxation at all, that is, T(1) = Gevo =
constant. The longest relaxation time is vanishingly small.

At the transition from liquid to solid, stress relaxes in a power law (see curve
(b) in Figure 5.3). The transition state (critical gel) has its own relaxation pattern,
which is universal [6, 7].

5.1.3 BOLTZMANN EQUATION OF LINEAR VISCOELASTICITY

The relaxation modulus &(t) is the only material function required to calculate the
stress 7(t) as a function of any strain history y(¢') for —oo < t' <t aslong as the
strain is small enough to avoid perturbation of the equilibrium state of the material.
The extra stress in the equilibrium material is fully defined by the classical theory
of linear viscgclasticity of Boltzmann (see, for example, [8]):

.
0
() = dr G - t")yy(t") 4
-0 .
The variable 1 — ¢’ denotes the distance into the past, where ¢ is the current time
and ¢’ is an instant in the past.
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5.1.4 RELAXATION TIME SPECTRUM

The relaxation modulus can be expressed as a Laplace transform of a continuous
relaxation time spectrum H(A):

&) = G, + / ” -d—:lH(l) etih )
[V]

H(A), called the spectrum from here on, is an alternative to the directly observ-
able relaxation modulus G(¢). Each of these material functions alone is sufficient
for describing the viscoelastic behavior of a material. The equivalent Boltzmann
equation for H()) is given in Appendix 5.A.

The H()) expresses the distribution of relaxation strengths as a function of
the relaxation time,A. It is a positive-valued function that is finite in the range
0 <A < Amax and zero above the longest relaxation time Any,,. The longest relax-
ation time Ama, belongs to the largest correlation length in the material (= entire
molecule in a polymer melt or largest defect in a polymeric solid).

The spectrum H(A) cannot be measured directly. It is preferably obtained
through mechanical spectroscopy and it requires extensive data analysis, resulting
in a discrete spectrum (see Section 5.3). Most physical models of materials are ex-
pressed in discrete spectra, and it is not clear yet whether H() is really continuous
or discrete. :

Molecular models for relaxation time spectra based on molecular theory were
introduced by Rouse [9], de Gennes [10], and Doi and Edwards [11]. The models
start out with the most simple molecular geometry, that of long, linear, fiexible
chains of uniform length. Predictions from these initial theories compare well with
experimental data of polymers within narrow time domains, but theories need to
become quite sophisticated for covering a wider range of relaxation times [11-14).

Many empirical models have also been proposed [71]. A recent proposal for
the relaxation of long, linear, flexible molecules of nearly uniform length gives
very good agreement with measured data [15]. This so-called BSW spectrum (of
Baumggrtel, Schausberger and Winter)

o [(XL)™ L)“' 5
HO = 'n,.C.;N [(lc) +(Lm ] ‘for)~<k,m @

0 for Apax < A

comprises a superposition of two power laws, the first one describing the self-
similarity of the glass transition and the second one expressing the self-similarity
of the entanglement behavior. The material parameter G, is the plateau modulus,

A e e e Bt Mt l o e E il i LT et o
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spectrum, 1g HQ)
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relaxation time, 1g A

Figure 5.4 Schematic of the BSW spectrum. The two power laws with slopes —n, and
n, correspond to the glass transition and entanglement relaxation regime,’
xespeeﬁwlxm&hmemamhnﬁonﬁmefmmmﬂemmuo
glass transition. The longest relaxation time Auas belongs to the relaxation of
the entire chain. The power laws are an expression of the self-similarity of the
polymer chain's, n, and of the glassy superstructure, a,. !

ng and n, are the relaxation exponents in the glass transition and entangiement
regime, respectively, A, is the characteristic time of crossover to the glass transition,
and Agex is the longest relaxation time. A schematic of the BSW spectrum is
presented in Figure 5.4. Generic parameter sets can be evaluated for materials
with similar molecular architecture but different molecular weights M [16]. The
only molecular-weight-dependent parameter is the longest relaxation time

Amax = he (%) | 0

which compares M to the polymer-specific crossover molecular weight M, for the
onset of entanglements. Exponent z is the scaling exponent that also describes the
dependence of zero-shear viscosity on molecular weight [8]; experimentally z was
found to have values of about 3.4 for large molecules M > M. [17]. The BSW
spectrum is the simplest spectrum known to be able to express relaxation data of
polymers with linear flexible molecules of uniform molecular weight. It has been
serving as reference when studying more complicated materials.
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5.1.5 DISCRETIZED FORM OF MODULUS AND SPECTRUM

Discrete spectra result in a relaxation modulus

N
&) =G+ gie™™ ®)

i=l
where coefficients g; and relaxation times ); are material parameters. Here, we
chose the sum of N exponential decays (Maxwell modes) for the time dependence
of the matcnal This does not pose any lack of generality because any continuous
function G(t) may be approximated by such a discrete set of Maxwell relaxation

modes. It should be noted that the discrete relaxation time spectrum

N
HO) =) &b/ -1 ©)
i=l
is governed by the same parameter set g;, A;, i = 1,2,3,... N as the relaxation
modulus. The expression 5(y) is the Dirac deita function.

Figure 5.5 shows the discrete relaxation and retardation time spectrum for a
linear polybutadiene with a weight-average molecular welght Mw = 70,000. At
the same time, the calculated material functions G(r) and .I () are displayed as

solid lines. The compliance J (1) will be defined next.

5.1.6 RETARDATION TIME SPECTRUM

The stress relaxation experiment is only one of many ways of defining and measur-
ing viscoelasticity in materials. Another useful approach requires application of a
constant stress tp on the material while the resulting strain y(¢) is measured. This
is the so-called creep experiment. The resulting strain is commonly expressed as
compliance

Jy = y0)/% (10)

or as retardation time spectrum L(A) [8]. All such related viscoelastic functions
can be converted into each other [18). If, for instance, the relaxation time spectrum
is known, it is possible to convert it to the retardation time spectrum; there is a
one-to-one relation between these two types of spectra [8]:

L) = H®) (11)

©dy Huw) \* , 2
(Ge—/o- Tklu—l) +n*H(A)
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Figure 5.5 Discrete relaxation time spectra g;, A; and retardation time spectra j;. A, fora
polybutadiene (symbols). These spectra were used to calculate the relaxation
modulus €r) and the compliance J(¢) (lines). The values of g and j depend
on the spacing of the discrete modes.

It would exceed the scope of this chapter to establish the wide range of such
relations. The focus will be on the relaxation modulus and the relaxation time
spectrum because either one, by itself, already defines the viscoelasticity polymeric
liquids and solids.

5.1.7 SCOPE OF MECHANICAL SPECTROSCOPY

Mechanical spectroscopy (MS) determines the above material properties by prob-
ing specific material samples in small amplitute oscillation at prescribed frequency
w. MS quantifies the strength, time scale, and temperature dependence of the char-
acteristic relaxation modes of a material. Most advantageous is its ability to detect
and resolve small differences between materials and to express changes in materi-
als during cross-linking or melting (to name some typical examples). Mechanical
spectroscopy is used for developing new materials and for tailoring their processing
behavior. !

Mechanical spectroscopy applies a periodic strain to the material. This has
several important advantages compared with other techniques:
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I. Each data point is dominated by the specific relaxation modes with
relaxation times near A = 1/w. Other relaxation modes have less
influence.

2. The experimental time for taking a single data point (sampling time) is
about ts = 2x/w independent of any longer relaxation modes that might
be present in the sample.

3. Each of the dynamic moduli independently carries all the information
about the spectrum. -

As an introduction we used step strain behavior to demonstrate the relaxation prop-
erties of materials in a most obvious way. For determining relaxation properties,
however, the time-periodic experiment of MS is preferable. It will be discussed
next. '

5.2 Mechanical Spectroscopy Experiment

5.2.1 SHEAR FLOW NOTATION

For the purpose of MS, which conventionally is performed in shear rheometers,
it is sufficient to consider t(f) to be the shear stress in response to a shearing
deformation at a shear rate

w0
y(@t) = a:"'("') (12)

over the history of the mﬁterial, —o00 < t' <t. The restriction to shear flow does
not cause any loss of generality (in isotropic materials at small strains, equilibrium
state) because the same spectrum governs all flows and deformations in the linear
viscoelastic range, i.e. the spectrum H()) is equally applicable to other types of
deformations (extension, for instance) within the linear viscoelastic range, as will
be shown in Section 5.6.

The stress components for the shear experiment are shown in Figure 5.6. These
are the shear stress

(=1 (13)

which we will simply call t in the context of this discussion of MS, and the normal
stress differences

Ni=tn—-m (14)
Nra=1tn—13 (15)
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y=tan o

figure 5.6 Infinitesimal material element in shear, where 1 is the velocity direction, 2 is
the velocity gradient direction, and 3 is the vorticity direction. The material
element is shown at two times, ¢’ and ¢; y(f: ¢') is the shear strain.

Jormal stresses and the shear stress are governed by the same relaxation modulus
ind spectrum, i.c., MS can concentrate on measurement of the shear stress only.
Jormal stresses and pressure P do not contribute directly.

2.2 OSCILLATORY SHEAR

[he MS experiment is performed by placing the viscoelastic material (test sample)
namechanical device (theometer) that allows small-amplitude sinusoidal shearing
t a strain

y(®) = w sin(wt); or a strain rate y(t) = wy cos(w!) (16)

After some start-up time (in the order of 1/w), the stress in the sample responds
sinusoidally .

t(t) = 1o sin(8 + wt)
= G'(®) yp sin(wt) + G”"(w) y cos(wt) an

(see Figure 5.7). The frequency of the sinusoidal stress t(¢) is the same as that of
the strain y(¢); however, t(¢) is shifted by a phase angle §(w). The factor ro(w. yo)
is the amplitude of the sinusoidal stress. The angular frequency w = 2 f [rad/s] is
defined by the number of cycles per time given by the frequency f [Hz]. For the data
analvsis. it does not matter whether the strain is prescribed and the stress is respood-

g o T wwse Rogr e or mechamoy STIIRTES AT Sanulv SmImen
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shear strain Y(t)
shear stress T(t)
first normal stress difference N (1)

timet
Figure 5.7 Schematic of the imposed strain ﬁmctio,n y(t) and tl.te material response (shear
stress r(f) and first normal stress difference N)(¢)) in a small-amplitude os-
cillatory shear experiment.

Mechanical spectroscopy derives its name from the fact that the sample is probed
at prescribed time scales ¢ = 1/w that depend on the choice of the experimental
frequency. The experiment is repeated for a range of frequencies, Wmin < @ < Wmax.
Because of experimental constraints (¢.g., weak torque values at low frequencies
or large slip and inertial effects at high frequencies), it is usually impossible to
measure G'(w) and G"(w) with a commercial theometer directly over more than
three or four decades of frequency.

It is customary to decompose the stress (Eq. (17)) into a part that is in phase
with the sinusoidal strain (Eq. (16)) governed by the storage modulus

G = 2 coss (18)
yO -
and a 90° out-of-phase part governed by the loss modulus
G"(@) = 2 sins (19)
Yo

The objective of the oscillatory shear experiment is to determine these two material-
specific moduli over a wide range of frequency, temperature, pressure, or other
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Figure 5.8 Dynamic moduli measured at different temperatures as used for the construc-
tion of the master curve shown in Figure 5.21 by time—temperature superpo-
sition. Open symbols represent G'; filled symbols represent G”. Data from
Mours and Winter 1994 {19].

material-affecting parameters. The frequency-dependent moduli are generally valid
for liquids and solids, i.c., for any isotropic material as long as the strain ampli-
tude yp is sufficiently small. G’ is a measure of the stored energy and G” of the
dissipated energy per cycle.

A typical data set (see Figure 5.8), spans about three to four decades in frequency.
The frequency range can be extended by time~temperature superposition [8] which
will be discussed in Section 5.5.1.

. 5.2.3 MULTIWAVE TECHNIQUES [20]

Instead of probing samples with a single frequency at a time (or a sequence of
single frequencies), it is possible to apply m frequencies simultaneously

y(0) = y;sin(w;1) (20)

=1
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and decompose the stress response

() =) 1;sin(; + w;t) @1)
j=t

into m individual components. The frequency is the same for corresponding com-
ponents of strain and stress. The result of the experiment is a set of m dynamic
moduli G'(w;), G"(w;) that are then evaluated as if each of them were being mea-
sured in a conventional (single-frequency) experiment. The number of probing
modes m cannot be very high, for the sum of the strain amplitudes

m
Ymax = ) ¥ 22)
J=1

should not exceed the linear viscoelastic limit. Typically one may choose m = 3.
The multiwave technique saves experimental time because, while measurements
are being made at the lowest frequency appropriate for a specific test sample, several
higher frequencies may be run simultaneously. Preferably, the lowest experimental
frequencies are probeg together to save the most time. Such time savings arc -
especially important for the study of transient materials.that change because of

cross-linking, degradation, or crystallization, for instance.

5.2.4 UNIVERSAL TERMINAL BEHAVIOR

The ratio of longest relaxation time Amsx and characteristic experimental time
defines the Deborah number [21] for the MS experiment as follows:

= 2 = 23
Np. s . (23)
Here, the characteristic experimental time is the sampling time ¢s (Eq. (36)). For
very low frequencies, the Deborah number becomes very small, Np, « 1, and the
polymer shows its distinct behavior as liquid or solid.

5.2.4.1 Polymeric Liquids

The low-frequency asymptotes of the moduli define the zero shear viscosity of the
liquid
"

ne = lim — (24)
w0 @
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and the recoverable compliance
J = = lim — (25)

For such low-frequency experiments, the polymer behavior is dominated by a
representative longest mode (A)

0

G(1) = goe™"/™ (26)
with

(-]
Z 8iki

W = S— @7)

th‘

im]

in discrete representation. The dynamic moduli approach the classic terminal be-
havior for Np. <« 1:

Gw~w?, G'w~o ; (28)
(see [8]). No new material parameters need to be introduced.
524.2 Polymeric Solids

The low-frequency asymptotes of the moduli define the equilibrium modulus

G.=limG' (29)
-0
and a transient shear viscosity
ns = li_.ﬂ}’ - (30)

which determines viscous losses in solids during transient deformations.

52.5 TYPICAL EXPERIMENTAL RESULTS

A wide range of dynamic mechanical data on liquids and solids can be found in
the classical textbooks of Ferry [8] and Tschoegl [22]. Here we can only show a
few typical examples.

The typical features of dynamic mechanical data of polymeric fluids express
themselves most distinctly in the special case of narrowly distributed, linear, flex-
ible polymers of high molecular weight. Polystyrene is a good example (see
Figure 5.9 in which the data shown are the starting point for finding the BSW
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Figure 5.9 Storage modulus G'(w), loss modulus G*(w), and phase shift 5(w) of narrowly

distributed polystyrene at 180 °C. The molecular weights are 34,000; 65,000;
125,000; 292,000; 757,000; 2,540,000. Data from Schausberger et al. [23].
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Figure 5.9 Continued.

spectrum, Eq. (6)). At low frequencies, the typical liquid behavior of G'(w;) ~
o’ and G"(w;) ~w can be seen. The crossover from terminal behavior to en-
tanglement occurs at a characteristic frequency that decreases with molecular
weight

we~ MJ* with z=~3.4 3Y

For model polymeric liquids of Figure 5.9, the crossover from flow to entangiement
behavior results in an actual intersect of G’ and G”; the intersect frequency w,
often serves as the inverse of a representative longest relaxation time A7, = 1/w;..
This representative time constant is somewhat smaller than the longest relaxation
time A7, < Amax but has the advantage that it can be read directly from G’, G"(w)
graphs. ’

The entanglement plateau of G (w), called the plateau modulus G9,, is known to
be independent of molecular weight M,,. The upturn of the moduli in Figure 5.9.
at high frequencies marks the crossover to the glass transition, which does not
significantly depend on M,,.

A mixture of two polymers of different molecular weights exhibits two dis-
tinct entanglement regions {25, 24). An example is shown in Figure 5.10. Each
of the components is narrowly distributed; broadening of the molecular weight
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Figure 5.10 The (a) storage and (b) loss moduli of bidisperse polybutadiene (PBD) blends
measured at 28 °C. The line through the data represents the model spectrum
described by Jackson and Winter [24]. Both M, and M, are highly entangled.
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distribution would widen the crossover regions, and the distinct features of the
dynamic moduli would get lost [26].

5.2.6 INTERRELATION WITH RELAXATION MODULUS
AND SPECTRUM

Experimental data of dynamic moduli G'(w) ansi G"(w) carry all the information
needed to determine the relaxation modulus G (r). However, extraction of the
information requires the inversion of integrals

storage modulus G'(w) = w / dt &(t) sin(wt) 32)
0

i 0
loss modulus G"(w)'= w / dt G(1) cos(wt), (33)
0

_which is a nontrivial task. It will be discussed in Section 5.3. The above equations
can be derived by inserting Eq. (16) into Boltzmann's equation of linear viscoelas-
ticity, Eq. (4) (see, for example, Bird et al. {27]). The dynamic moduli may also
be expressed with the continuous spectrum H(A) by

, _ 0 g4 (w}‘)z
G(w)—oe-/o HO s (34)
°°dl (w)) )
" = 5
6" () fo HO (35)

The spectrum covers the transient part of the relaxation process. This is why the
equilibrium modulus needs to be subtracted when performing spectroscopy on
solids.

52.7 SPECTROSCOPIC NATURE OF EXPERIMENT

The basic advantages of small-amplitude oscillatory strain (shear or extension)
come through its spectroscopic nature: The experimental time for taking a single
data point, called sampling time s, is roughly equal to the period of the strain wave -

t,=2n/w (36)

This allows measurement of specific relaxation modes with time tonstants on the
order of 1/w independent of any longer or shorter modes that might be present
in the polymer, i.c., only a small fraction of the spectrum is actually sampled in
an individual experiment. Each data point w;, G'(w;), G”(w;) is dominated by the
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specific relaxation modes with relaxation times near A = 1/w,. Other relaxation
modes have less influence, which can be demonstrated most efficiently with a
polymer at its gel point for which the longest relaxation time diverges to infinity,
Amax = 00 [7]. Any measurement that depends on Ame, Will necessarily fail at
the gel point. Mechanical spectroscopy, however, is able to probe intermediate
modes of the spectrum without interference from the diverging Amax. The spec-
trum at the gel point is known to be self-similar at times larger than some material
characteristic crossover time A (6, 7].

HA)=a\™ for Ao <A <00 @37

For the purpose of demonstrating the spectroscopic rature of MS, we select a sam-
pling frequency w; within the self-similar region of the spectrum (w; < 1/Ag) and
evaluate the corresponding dynamic moduli by inserting Eq. (37) into Egs. (34)
and (35):

-] 2
G'(w) = aw! / dx F(x) with F(x)= x"""’”-x—z (38)
0 1+x
e X
G"(w;) = ao] / dx F'(x) with F'(x)=x"""_——_  (39)
A . , 1+x?

The areas under the F and F” curves determine the values of the complex moduli-
G’, G" (see Figure 5.11). The graph shows that the relaxation modes near Aw; = |

determine the outcome of the experiment. Note that G, is equal to zero at the gel

point and needs not to be considered in this example. The self-similar spectrum
of the critical gel allows calculation of dynamic moduli

G' = aw'r /(2 sin(nn/2)) 40
G" = aw"n /(2 cos(nn/2)) (a1

forw < 1/A0. ..
This spectroscopic property needs to be contrasted with nonspectroscopic meth-

ods that measure steady-state properties (the steady shear viscosity, for instance).
They simultancously probe an integral over all relaxation modes.

5.2.8 RHEOMETER GEOMETRIES

For the most widely used configuration, the plate-and-plate rheometer (Figure 5.12),
the polymer is molded into a disk-shaped sample of, for instance, radius R =
12.5 mm and h = 1-mm height. The sample is sandwiched between disk-shaped
rheometer fixtures. The configuration has a common symmetry axis. When one of
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Figure 5.12 Plate and plate theometer with schematic of & shearing experiment with
disk-shaped sample. Drive and torque measurement are on opposite sides
(in this example). An axial force F is required to maintain constant sample
thickness h. '
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the fixtures is rotated (at constant k) while the other fixture is held stationary,
the sample deforms and transmits a torque that can be measured. The angle of
rotation and the torque can be recalculated into shear strain y(r) and shear stress
t(¢) for further analysis. Stress and strain vary across the sample, but this does not
pose a problem for experiments in the linear viscoelastic range because a linear
relation exists between y(r) and t(f). Large strain experiments, which we do not ;
address here, would require Rabinowitch-type corrections or switching to other
flow geometries.

Other common geometries are cone-and-plate and annulus between concentric
cylinders (Couette rheometer). Detailed descriptions of the many possible geome-
tries and related data analyses are well documented in textbooks {27-31]. Data
analysis requires corrections for instrument compliance and inertia.

5.2.9 EXPERIMENTAL PROBLEMS

It seems to be the general property of polymers that they slip on surfaces [32].
However, the slip is negligibly small in most experiments. Data analysis proceeds
under the assumption that there is no relative velocity between the polymer and
the wall of the rheometer (“stick™). Problems arise when the slip velocity is large
enough to alter the strain in the sample. Discussion of this subject would exceed
the task of this chapter.

Another common problem is the lack of chemical stability of the sample. Rhe-
ological experiments require time during which the polymer may change and stan-
dard data analysis will no longer be possible. This subject is of great importance
and will be discussed in Section 5.4.

The experimental frequencies range over win < @ < Wmay. Sample inertia and
elastic instabilities limit the experiment at high frequencies (— wmax). Transducer
sensitivity (or lack thereof) and increasing sampling time ¢, ~ 1/, limit the ex-
periment at low frequencies (— wmin).

The large strain limits of the linear viscoelastic range of the experiment car
be detected by Fourier analysis of the stress response to the sinusoidal strain [33-
35]. While at small strain (linear viscoelastic regime), the stress response is of the
same frequency as the input, and higher frequencies are not represented except
for the noise in the experiment. However, at larger strain amplitudes additional
frequencies start to appear in the stress response. These frequencies are multiples
of the sampling frequency w,. Most pronounced are the odd harmonies with 3 w;,
5 ws, 7 w;, and higher. Discussion of these nonlinear effects is beyond the scope of
this chapter.
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5210 PROBING NONEQUILIBRIUM STATES

Mechanical Spectroscopy also allows the study of material samples that were
forced away from their equilibrium state. Such nonequilibrium conditions may
arise, for instance, during large strains. For the purpose of MS, one modulates
the large strain by superimposing small perturbations of sinusoidal [36) or step
{37] dynamics. The only requirement for MS is a linear response of the stress
increments to the small strain perturbations (or vice versa), whereas the main part
of the experiment is still nonlinear. The experiments are difficult to perform with
sufficient accuracy, and not much data are available. The main problem seems
to be that the perturbations have to be extremely small in order to maintain lin-
car modulation conditions [38]. The probing of nonequilibrium states with MS
is very appealing; more such work will be seen in the near future. The basic de-
tails of data analysis are the same as those entailed in probing equilibrium states
except that one has to account for the out-of-equilibrium condition in which the
Boltzmann equation, Eq. (4), does not apply any more. No separate discussion
will be needed here. In the remainder of this chapter, we will assume that the
material has fully equilibrated because this is the most common experimental
condition.

33 Data Analysis for Mechanical Spectroscopy

In this section, we will assume that oscillatory experiments have been completed
successfully, that the experiments have been analyzed, and that a G'(w), G”(w) data
sct is ready for further analysis. Many different methods have been proposed for
converting the measured dynamic moduli G, G” into the relaxation time spectrum
of the test sample [8, 1, 39—45]. Orbey and Dealy [46] have presented an overview
of several of these methods. The spectrum may also be extracted from any other
material function besides G’ and G”. Advanced methods have been proposed for
inverting creep data (see, for example, [47, 48]). However, the focus here will
continue to be on the G, G” data.

The solution of the inversion problem will always be a compromise. Important
criteria to consider are as follows [74]:

1. Good fit of the experimental data. . -

2. Avoidance of overfitting. The algorithm should be able to find the
optimum amount of detail that can be extracted from experimental data
without producing artifacts.
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3. The format of g; and A; should be freely adjustable during the inversion
of the data,

4. The resulting material parameters should have physical meaning.

5. Minimization of the truncation error. The data are always cut off on both
sides of the frequency scale. This truncation may be the source of
substantial error [49).

6. Verification of experimental data quality. The data are always
inconsistent to some degree because the signal-to-noise ratios differ for
G’ and G”. This may cause a substantial discrepancy between fit and
data, which can be detected during data analysis.

7. For practical considerations, the relaxation modulus or the spectrum
should be expressed by a function or a sum of functions that can be
integrated easily in the various linear viscoelastic model calculations.
This again leads us to an exponential form (Eq. (8)).

8. For practical considerations, the number of parameters should be small
(for ease of use in modeling calculations and for storing material data in
a database).

9. For practical considerations, the computation time should be short. All
conversion methods in the literature Seem to satisfy this criterion owing
to the high computation speed of desktop computers.

Most problematic of these criteria is truncation. Low frequency data should extend
into the terminal region to avoid truncation, but no characteristic limiting behavior
exists at high frequencies; high frequency truncation is unavoidable.

5.3.1 METHOD OF EVALUATING H()\) FROM G',G" DATA

Conversion methods are fairly established by now, and practitioners can choose
from several options. The robust numerical algorithm of Baumgirtel et al. [43, 50]
satisfies most of the preceding criteria. It avoids ill-posedness, which seems to be
inherent in the curve fitting when too many parameters are chosen. The method
is especially useful when working with complex polymeric materials because the
data do not need to be extrapolated beyond the experimental frequency window (as
with a Fourier transform); no material-specific empiricisms are needed. A nonlinear
regression simultaneously adjusts g;, A;,i = 1,2,3..., N to obtain a best fit of
G’. G". A type of regularization is achicved by systematically searching for the
spectrum with the smallest number of Maxwell modes that still represents the data
within the experimental error margin (parsimonious modeling). A closer fit could
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be achieved, but it would not have any physical significance. The determination
of the spectrum consists of four steps. The steps will be discussed separately as
follows:

53.1.1 Step 1: Experiment

The G, G” data set is generated in an MS experiment as described in the preceding
section. The data set extends over a finite time window 1 /wmax <1 < 1/Wmin, Which
should cover at least three to four decades. If possible, the frequency window has
been increased further by time—temperature superposition, as will be discussed in
Section 5.5.1.

- §3.1.2  Step 2: Discretization

© We assume that the test sample may be represented by a unique continuous function
H()) sufficiently smooth to be linearized within small time intervals [A;. 1]
sround };. Baumg#irtel and Winter [50] proposed a simple way of dlscreuzmg the
spectrum into a set of individual Maxwell modes

A N od
fl ' i;in(x) A x H(A) e A 1& = RO &, @)

;
cach of them representing a short time interval. The size of the interval is

A; = (A7 /Af) = Iny/Aimi /A 43)

The expressions A, and A" are the upper and lower time limits of the step A;
around A;. Note that A, is positive because A;_| > A;4j owing to the convention
of starting the series (Eq. (8)) with the longest relaxation time, Amax = A;. For
simplicity, the step size A; may be chosen as 2 constant. It is preferable, however,
o treat A; as a variable because doing so allows a closer fit of the data with fewer
parameters. With this discretization, the relaxation modulus becomes (see also
Eq. (8))

0 oo
l-Ge=[ _Hl —t/h __ / Hl -l/x~ Hl A -t/
G() A Me Z e Z () Bje

im] il

(44)
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This defines the relation between the spectrum and the strength of the Maxwell
modes

g = H(A)In 5— (45)

i+l

which appear in the discrete representation of the dynamic moduli

N 2
) - . (w)'l )
G = Ge= D 81 Gy 9
N
A
G"(w) = Z g—t @7

P 1 4+ (wAy)?

The values of g; decrease for short time intervals A;. This is an important fact
that needs to be considered when comparing discrete spectra with each other.

The continuous spectrum can be completely reconstructed from the discrete
modes if the highest frequency in the wave representation of H()) (Fourier series)
is smaller than twice the discretizing frequency [51]. This needs to be checked
in each case, if possible. The discretizing frequency is defined as the reciprocal
mode spacing 1/4,. The discrete step size A; can, however, not be arbitrarily small

density of the discrete relaxation modes.

5.3.1.3 Step 3: Determination of the Discrete Solution
gis N, i=123...N

From the preceding equations, the discrete spectrum g;. A;,i = 1,2,3... N may
be determined by fitting the measured values of the dynamic moduli.

For an experiment with M data points, [we, G'(@r), G"(wr)] with k = 1,2,
3, ... M, the deviation between fit, Eqs. (46) and (47), and data points may be
expressed as standard deviation SD by

1 & 1 & giloeh)? ’
D? = — 1-
S. .M ,‘Z,: [ G'(@x) ,2_,: 1+ (wedi)?

2
I & giad
N 48
+ [l G"@wx) = T+ (wehr)? )

im}
Minimization of SD (for constant N) results in a parameter set g;, A; for the best fit.
The fitting program first places a large number of Maxwell modes g; 0, A; 0 evenly

i

i
o / 1
because of the noise in the data. We will return to these criteria when choosing the
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over the frequency range of the data, including an additional frequency decade on
both sides. The modes can be calculated directly by solving a system of algebraic
equations. A nonlinear fit follows in which g;, A;, and N are optimized to obtain
the best fit of the data with a minimum number of modes.

The right choice of N is essential for the success of the algorithm. For small
values of N, the discrete spectrum is still too coarse, and model calculations with
the spectrum appear wavy. The waviness and the deviation between fit and data
decrease as we take more and more modes. This is documented in Figure 5.13 in
which the (minimized 8SD/dg;, A; = 0) standard deviation SD decreases as N is
allowed to grow. The SD curve basically consists of two arms, the steep one for the
improved fit of the samples contribution to G’, G” and the flat one for the fitting of
the noise in the data. The crossover between these two regions is where we suggest
placing N, i.c., the value of N depends on the noise level in the data. The resulting
relaxation time spectrum has been termed the parsimonious spectrum [50] because
it attempts the best fit with the fewest number of parameters.

The mode density N/decade has to be chosen such that it satisfies the Mozorov
Discrepancy Principle [53] and the Nyquist theorem [51]. The Mozorov Dis-
crepancy Principle gives an upper limit of N' beyond which the data fitting be-
comes physically meaningless. We define this limit by the mode density at the
transition from material fitting to noise fitting (marked as “optimum range” in
Figure 5.13). The Nyquist theorem requires that this characteristic mode density

10°
10°!- )

a) .

v optimum
10°2; Y range
103 T

0.5 1.0 1.5 2.0 _ .25
N /decade '

Figure 5.13  Calculated standard deviation between data and discrete moduli (parsimo-
nious model) Ref, [52].
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(= discretizing frequency) be at least twice as high as the highest frequency in
the wave representation of H()). This requirement normally is satisfied because
(1) good experiments have little noise and, thus, give reasonably high values for
the characteristic mode density and (2) the spectrum H(A) is a very gradually
changing function (for most materials).

Higher discretizing frequencies would reconstruct the high-frequency varia-
tions (noise) in the data [51]. It would be possible to use higher discretizing
frequencies and avoid noise reconstruction by introducing additional smoothing
assumptions. These assumptions, however, can easily produce artifacts that are
difficult to identify. We purposely avoid this phenomenon with the parsimonious
modeling.

The calculated relaxation spectrum may be directly converted into the retarda-
tion spectrum ji, A;,i = 1,2, 3...(N —1), as reported by Baumgirtel and Winter
[43,18).

The calculated discrete set of parameters g; and A; (also j; and A;) is, obviously,
only valid in a time window that corresponds to the frequency window of the input
data fmin = 1 /Wmax aNd tmex = 1/wmin. However, in cases where the terminal time of
the material is known (longest relaxation mode for liquids or equilibrium modulus
for solids), the upper time limit becomes irreleyant and, in turn, the discrete spectra
become valid for infinitely long times (zero frequency).

5.3.1.4 Step 4: Conversion of the Discrete Solution
in a Continuous Spectrum

As the last step, the discrete spectrum needs to be converted back into the contin-
uous spectrum with points H(;) = g;/A; on the continuous line H(A) (see the
example of Figure 5.14).

The preceding result has been achieved without any prior smoothing of the
data. The data are expressed with a minimum of parameters and within the SD of
the data. The information is extracted from the data to the fullest extent without
over-interpretation of the data, which would lead to unacceptable artifacts.

5.3.2 PROPERTIES OF THE SOLUTION

After having completed the solution procedure, we are ready to explore the prop-
erties of the solution algorithm. This exploration is the most interesting part of
working on a computer algorithm because it most likely will lead to unexpected
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Figure 5.14 Discrete relaxation time spectrum as calculated from dynamic mechanical
data of a nearly monodisperse linear polybutadiene with M,, = 70,000. The
line represents the continuous BSW spectrum for the same material.

results thatlong for explanation just as in a real experiment. We start out by search-
ing for general trends in the behavior of the algorithm and then try to abstract these
trends into general statements (“rules”) and check the limits at which they start to
fail. Some of these properties will be discussed in the next paragraphs, and often
it will become clear that our observations will need more rigorous proof before
they will be acceptable in a more general context. '

53.2.1 Ill-Posedness

The inversion of a single integral equation such as Eq. (22) for G’ (or Eq. (23) for
G”) is known to be an ill-posed problem 54, 40). A sign of ill-posedness would be
large variations in the solution when adding (or omitting) some data or even a single
data point to the experimental set. Little is known about the simultaneous inversion
of two interrelated integrals. A surprising observation, contrary to statements in
the literature, is that the typical characteristics of ill-posedness completely vanish
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when the preceding inversion is simultaneously performed on both integrals for
G' and G”". This lack of ill-posedness is most valuable for our purposes of finding
the spectrum.

Ill-posedness has been avoided with discrete relaxation spectra by keeping N
small (54]. The algorithm of Baumgirtel ef al. also becomes more robust when
reducing V. However, robustness does not seem to be the problem, for the algorithm
behaved well-posed up to high N values as long as data were artificially smoothed
(smoothing for testing puirposes only), see Figure 16 in Ref. [50]. An upper limit
occurred naturally at very high N at which the modes are so dense that rounding
errors become important in the minimization procedure. This suggests that it is
not the ill-posedness that creates an upper limit oa N, but it is the over-fitting of
noise in the data.

5.3.2.2 Uniqueness

It will be necessary to show uniqueness before further physical conclusions can
be drawn from any experimental spectrum. For checking uniqueness, one needs to
transform the discrete spectra g;. A; into continuous form to see that, indeed, vari-
ous very different looking discrete spectra reduce to the shme continuous function
H()). If this is satisfied, we call the discrete solutions unique because they are all
equivalent representations of one and the same H()).

Several additional observations let us believe that the parsimonious spectrum
poses a “unique” solution to the problem (within experimental error). The various
observations entail the following:

1. The starting set g; o, A; 0 does not affect the final parsimonious
spectrum.

2. Random omissjon of several data points from the experimental input
does not change the calculated continuous H(1).

3. Addition of some artificial, random noise to the data does not affect the
calculated continuous H(A) provided that we maintain the approximate
overall noise level.

In addition to these observations on real data, Baumgiirtel et al. [43, 50] produced
artificial G', G” data from a known spectrum H()) and, to close the circle of
thought, used the algorithm as described above and always returned to the original
spectrum. This is an important test that needs to be satisfied by a conversion
algorithm before considering it further.
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. 53.3 COMPUTER-AIDED CONSISTENCY TESTS

§3.3.1 Prediction of Other Material Functions and Comparison
with Experiment

The newly determined H (1) may be expressed in any of the other linear viscoelas-
tic material functions [8) and the result should be consistent with experimental
observations and with theory. The most obvious tests are

plotting of G’, G” data against calculated G', G” (from H(A)),

plotting of deviations between the preceding functions versus frequency,

plotting of relaxation modulus (from H(A)),

plotting of creep compliance (from H())), and

predicting of stress during start-ups and comparison with experiments (see
equations in Section 5.6).

All of these tasks are commonly berfonned by cofnputer. and the result is presented
in the interactive graphics mode. Specific tests are discussed in the following
paragraphs.

5.3.3.1.1 Kramers—Kronig Check [74]

The storage modulus G’ and the loss modulus G” are not independent of each

other. They are interrelated by the Kramers—Kronig relation
G'(w) _ /°° dx G"(x)

- x w?—x?'

which has been described by Bird et al. [27] and by Boij et al. [55]. The relation

is difficult to apply to experimental data because the data are truncated at low and
- high frequency. This is where discretization helps. The discrete form of Eq. (49)

49

&M _2 f 3 &k 0
& l+@y)P  n o w’ :c2 ~ 1+ (wr)?
may be rearranged into

o0 l l .
,;g‘ '{1+(wx.)2 fo"’" wz—x21+(xx,)2}‘° e

It can be shown that the function in the bracket is equal to zero for any A; because
cach individual Maxwell mode g;, A; satisfies the Kramers—Kronig relation. The
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equilibrium modulus G. is included in these calculations as a Maxwell mode
with infinitely long relaxation time. The conclusion is that the discrete relaxation
modulus, Eq. (8), will always satisfy the Kramers—Kronig relation.

This result has far-reaching implications for the evaluation of dynamic mechan-
ical experiments because the spectrum calculation tells us when a data set went
bad: If the computer algorithm is not able to fit a given set of G, G” data, then one
can assume that the data set violates the Kramers—Kronig relation. Such violation
can always happen for various experimental reasons. We have used that criterion
effectively for detecting faulty data sets. The Kramers—Kronig check is one of the
very strengths of the parsimonious spectrum calculation.

5.3.4 COMPUTER CODE

The preceding data analysis has been written as computer code. The code is used
by many laboratories worldwide. Detailed descriptions can be found through the
Internet at http://members.tripod.com/~Rheology/.

5.4 Time-Resolved Mechanical Spectroscopy (TRMS)

Mechanical spectroscopy is the preferred tool to study materials with changing
structure such as polymers during gelation (an example will be given later), phase
transition, decomposition, polymerization, and so forth. Time-resolved techniques
were developed to study the dynamic properties of such mutating materials (56,
57, 58, 19]). We use the term mutation as a general expression for changes that
affect the molecular mobility and thus the relaxation behavior of the investigated
material. The change in chemically cross-linking polymers depends on the extent of
reaction p, which changes from p =0to p — 1 as the reaction proceeds. For want
of a generally applicable variable, we will use symbol p to identify the structural
state of a changing material without specifying the type of structural change.
The linear viscoelastic behavior of a transient material may be expressed as

' t
0= [ _ar g penpe) (5)
-0

\:Jhcre (1) is the shear stress and y(r) is the shear rate. The relaxation function
G (t. 1, p(t')) accounts for mutation during the relaxation processes. It is positively
valued and decays monotonically withs = r—¢’. The equation is based on the linear
superposition principle of stress and strain, i.e., its range of validity is restricted
to sufficiently small strains and strain rates.
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Figure 5.15 Schematic of time-resolved mechanical spectroscopy and expected data fora
cross-linking material. The data analysis is performed with a software called
GELPRO. Reference [19).

Mechanical spectroscopy is applicable to transient samples, especially because
of its spectroscopic nature. However, a wide range of frequencies needs to be
applied either simultaneously [20] or sequentially. Simultaneous probing at several
frequencies (multiwave method, Fourier transform mechanical spectroscopy) has
the advantage of shortening the experimental time and accommodating higher rates
of mutation. However, it has the disadvantage that the overall strain amplitude may
quickly exceed the limits of linear viscoelasticity. For this reason, we recently used
sequentially increasing frequencies, one after the other, just as in conventional MS.
At each frequency a single measurement was performed. This frequency cycle was
then repeated again and again until the rate of mutation ceased. A schematic of this
technique is shown in Figure 5.15 for a cross-linking material. In this example, the
point of liquid—solid transition can be determined from the crossover of tan §(w),
as described by Chambon and Winter [6]. A real data set is shown in Figure 5.16.

The sampling time 1, in time-resolved MS (TRMS) is again the duration of a sin-
gle measurement, i.c., the time required by the theometer to take a single data point.
For an oscillatory shear experiment, ¢, is approximately given by the period of the
imposed shear wave (Eq. (36)). During this period the shear stress response is mea-
sured continuously and then transformed into a single data point for the properties
of interest in such an experiment; for example, the dynamic moduli G’ and G".

54.1 QUASI-STABILITY

The sample changcs during each sampling. If the total change is large during ¢,
the function G of Eq. (52) needs to be known for the data analysis (which rarely
is the case). To avoid such problems of sample mutation, the mutation during
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Figure 5.16 Evolution of loss tangent (tan §) during cross-linking of PBD38 at 28 °C
for several frequencies (1-100 rad/s, 3 frequencies/decade). The gel point
is marked by the tan 8 crossover, i.c the frequency independence of tansd.
Reference [73).

1, needs to be small enough so that it can be neglected. The rate of mutation is
shown as slope in Figure 5.17. The inverse of the slope has been used to define a
mutation time Ay, which may refer to the properties G’ or G”

, 136! 1 3G6"|™
m=loa| 0 O w= 3

The total change during the sampling time ¢, = 2xr/ has been expressed in the
mutation number [59] by

experimental time
mutation time
which needs to be evaluated for both G’ and G” as follows:
, _ 2;x 3G’ rN"—zn?-g—,:
™~ WG 3’ ™ wG” 3t
the larger value determines the admissibility of the experiment. Usually, G’ re-
sponds more sensitively for transient materials. The mutation number may be

Nou = = experimental time = rate of change,

(34
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Figure 5.17 Evolution of dynamic moduli during cross-linking of PBD38 at w = 1 rad/s
(T = 28 *C). Lines represent the mode! calculations as outlined in this
chapter, and symbols depict the experimental data.

combined with the Deborah number (Eq. (23)) by

A 3G’ " A 3G”

T NpNG, = Y TTE (55)
This dimensionless group is important because dynamic mechamcal experiments
become nonlinear when Ng, or N Np, €xceed certain values. Winter et al.
[59] found, for instance, that nonlinear effects in a gelation experiment could be
observed for Ny greater than 0.15. On the other hand, Mours and Winter [19)
determined a critical mutation number of 0.9 for a constant heating rate experiment.
For Ny of New Npe below the critical value, the sample can be assumed to behave
quasi-stably during the sampling of single experimental points.

The characterization of a quasi-stable sample can be understood by looking at
the schematic plot (property G’, G” versus time on different time scales) in Figure
5.18. The material properties change during the entire mutation. If the probing
time or the rate of overall property change is small, the sample behaves quasi-
stably during the experimental time ¢, resulting in a sinusoidal stress response

NpeNy, =
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Figure 5.18
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Evolution of dynamic moduli during cross-linking of PBD38 at (2) w = 0.01
rad/sand (b)w = 0.1 rad/s (T = 28 *C). Moduli calculated from the modeled
shear stress are depicted by symbols. The displayed range is equivalent to
the experimental time ¢,. Lines correspond to the phenomenological model
of Mours and Winter [73].
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Figure 5.19 Change of interesting property g on different time scales (left: change of
property during overall experiment; middle: response to the probing at pre-
scribed frequency (during experimental time £,); right: rapid variations of
experimental signal (noise)) [19].

to an imposed sinusoidal strain. In this case, each data point represents a distinct
(quasi-stable) state of the material. '

5.4.2 TRMS DATA ANALYSIS [19]

Each TRMS data point represents a different state of the material, and interpolation
is necessary to obtain the desired data as a function of frequency at distinct material
states. The interpolation requires the following sequence of procedures, which have

been assigned to a personal computer:

54.2.1 Sorting

The data points G'(@;, p(1)) and G"(@;, p())(j = 1.2.... M, where M is the
number of discrete frequencies), initially sorted in terms of increasing time, must
be rearranged in terms of increasing frequency.
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54.2.2 Smoothing

Continuous curves f;(p)and f}(p)are calculated for each frequency w; represent-
ing the evolving moduli G'(w;, p(1)) and G"(w;, p(t)) as a function of the variable
p, which describes the ongoing mutation process. Data smoothing in conjunction
with the curve fitting gives the most consistent results. This must be repeated for
each discrete frequency w; of the G’ and G” data set.

5.4.2.3 Interpolation

Using these fitted curves, dynamic mechanical material functions (G'(w, &), G"
(w, 4;). @an8(w, 1), 28(w, t;)/7, etc.) can be interpolated at discrete material states
(represented by the time ;) for each of the frequencies. This results in a compre-
hensive rheological description of each material state during the structural or other
deveiopment that influences the flow properties.

54.2.4 Further Analysis

The interpolated data sets can now be used to stydy the material behavior at different
structural states. One example is the use of superposition principles, if applicable,
such as time-temperature superposition or time—cure superposition, to combine
the data into master curves. As an example for a typical TRMS experiment, data
on a cross-linking polybutadiene {73] are shown in Figure 5.20.

5.4.3 CROSS-LINKING OF POLYBUTADIENE (PBD 38)

As an example, we consider cross-linking of a polybutadienc precursor with
M., = 37,900 (PBD38). The evolution of the relaxation time spectrum during
cross-linking was described using a phenomenological model and correspond-
ing parameters, as given by Mours and Winter [73]. Mutation numbers for all
frequencies were calculated using

t;, 3G’

G o’

as given in Table 5.1. The very low mutation numbers (N, < 0.07) at the exper-
imental frequencies (w > | rad/s) ensured that effects of the material change on
the measured dynamic moduli were negligible. In these cases, agreement between
the model calculations.and the experimental dynamic moduli was satisfactory, as
displayed in Figure 5.17, for the case of w = 1 rad/s. The deviations at short times
in the storage modulus are due to the transducer insensitivity at low torque values.

Npy =
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Figure 5.20  Storage modulus data of PBD38 samples at different extents of reaction
(Teer = 28 °C). Time-resolved mechanical spectroscopy data in combination
with data on chemically stopped samples extend the frequency window,
which, for TRMS alone, would be quite small. The gel point is marked by
a line [73).

The resulting dynamic moduli for the lower frequencies (w =0.01 rad/s and
w=0.1 rad/s) are shown in Figure 5.18. Two sets of symbols are displayed for
each frequency connected by horizontal lines. The reason for this is the ambiguity
in determining the time for each data point. Because the experimental time
can be rather long, depending on the frequency (see Table 5.1), the calculated

Table 5.1 Average and maximum mutation
numbers and experimental times at several
frequencies during cross-linking of PBD38.

w (rad/s) 1,(s) Neu,max N average
0.01 650 3.7 2.1
0.03 300 3.0 1.2
0.05 200 2.1 0.9
0.1 120 1.1 0.5
1 10 0.07 0.03

10 3 0.02 0.01
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values represent an average over this time period 4. In an actual experiment, the
rheometer usually uses the initial time of fiitial(ts = fend — finitia1) as the actual time
for the corresponding data point. This results in an overestimation of the moduli
because they keep increasing during the cross-linking reaction. Similarly, if one
takes feqq as time for the data point, the moduli are generally too low. The lines in
the preceding figures represent model calculations of the dynamic moduli using
the phenomenological model developed by Mours and Winter [73].

Calculated moduli agree reasonably well with experimental data, except for
the lowest frequency cases (w = 0.01 rad/s). The average and maximum mutation
numbers are very high (above 2) in this case. For the three higher frequencies
(w = 0.03 rad/s to w=0.1 rad/s), the moduli increase monotonically with time
and follow along the expected values. However, because of the ambiguity in the
determination of the time ¢ for each data point, it is impossible to find actual
agreement between simulation and model. Lower mutation numbers (at higher
frequencies) tend to give closer agreement. This is especially true beyond the gel
point, where mutation numbers are usually lower than before the gel point. The
criterion N,y tends to take on the highest value shortly before the gel point for all
studied frequencies.

In conclusion, the preceding modeling basically agregs with experimental find-
ings that the mutation number during time-resolved rheometry experiments of
cross-linking samples should stay below a value of 0.2. The average value of 0.5
at w=0.1 rad/s is still too high to achieve good agreement with the expected
data without arbitrarily changing the time stamp of each data point. However, the
lower mutation number at frequencies above w = 1 rad/s results in good agreement
between experimental data and simulation.

5.5 Temperature Effects and Time-Temperature
Superposition

5.5.1 TIME-TEMPERATURE SUPERPOSITION (tTS)

Thermorheologically simple materials obey the so-called time—temperature su-
perposition principle for which time and temperature changes are equivalent (8].
Frequency-dependent data at different temperatures can be superimposed (by si-
multaneous horizontal and vertical shifting) to yield a so-called master curve ata
reference temperature Ty within the experimental temperature range. This prop-
erty was found with homopolymers (and some miscible biends) over wide fre-
quency or time windows. Commercial software packages are available that can
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easily perform this type of shifting on a personal computer (see, for instance,
http://members.tripod.com/ ~Rheology/). The superposition typically yields plots
of

reduced storage modulus br G’ versus reduced frequency arw
reduced loss modulus b7 G” versus reduced frequency arw
loss tangent G”/G’ 0 versus reduced frequency arw
reduced relaxation modulus br G versus reduced time ¢ /ar

reduced dynamic viscosity br n*/ar versus reduced frequency arw

The temperature shift factors ar and by represent the horizontal and vertical shift,
respectively, of data at the experimen'tal temperature and onto Trer.

Time—temperature superposition allows shifting of discrete spectra to new tem-
peratures. This requires that groups of discrete relaxation modes

Ai(T) = Mi(Twer)ar, and gi(T) = gi(Teer)/ by (56)

shift with common shift factors ar and br. Time-temperature superposition, if
applicable, is able to extend the available frequency window (see Figure 5.21).
This extension of the frequency window is one of the main reasons for performing
time-temperature superposition.

5.5.2 LIMITS OF (TS

An understanding of tTS behavior in MS experiments helps to define experimen-
tal criteria for measuring the limits when (TS starts to break down. For example,
temperature changes may induce transitions in morphology that cause sudden
changes in the molecular mobility. Appropriate methods for MS have been dis-
cussed in Section 5.4. Time—temperature superposition is not possible for these
materials.

It should be noted that even the long-chain dynamics (entanglement and terminal
region) of homopolymers do not necessarily shift with the same shift factor as the
short segmental dynamics (glass transition, glass), as shown by Inoue et al. {60].
This is not very obvious because most data sets do not cover a wide enough
frequency or time window. In general, miscible polymer blends do not obey the
{TS. Exceptions are polymer blends for which (a) the glass transition temperatures
of the components are very close to each other, or (b) the molecules of the blend
components interact very strongly, or both {61, 62].
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Figure 5.21 Storage and loss modulus master curves of a nearly monodisperse lincar
polybutadiene with Mw =37,700. The data cover the terminal region at
low frequencies and show the entarfglement pldteau in G’ at intermediate
frequencies and the crossover to the glass transition at high frequencies
[(72).

5.5.3 TEMPERATURE SHIFT FACTORS

Relaxation rates are highest at high temperatures. There have been different at-
tempts in the literature to describe the temperature dependence of the horizontal
shift factors. Today, the three-parameter Williams—Landel-Ferry equation (WLF)
is widely accepted [8):

Z6T — Te)
Ciy4+T =Ty’
where 7, is the glass transition temperature of the specific polymer. Williams et al. .
(63] proposed universal values of C) =7.60 and C3 =227.3 K if T, is chosen

somewhat close to 7.’
Some researchers prefer the format of the three-parameter Vogel equation

(64, 65): .
E.( 1 1 '
lnar-i(T—Tv—TM—Tv)' 9

logar = Ty < T < (Ty + 200K), (57
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which is equivalent to the WLF equation. The Vogel temperature' Ty is much below
the glass temperature. Parameters in Eqs. (57) and (58) are convertible into each
other:

( ﬁulo)cu R(T,,f T G=Tu-T (59)

Far above the Vogel temperature, 7 3> Ty, a simpler two-panmeter' Arthenius-type
expression is sufficient to trace experimental data:

E,./1 1
=—{ - - for (T, + 200K) < T.
Inar = ( ‘) or ( s+ )< (60)

The Arrhenius parameter E,/R is usually extracted from a plot of logar versus
reciprocal temperature 1/7T. If the Arrhenius-type dependence is a valid approxi-
mation, this plot shows a straight line with a slope of E, /(2.303R). In the case of
WLF-behavior, the temperature dependence of ar deviates from this straight line
(see Figure 5.22 for polybutadiene with M,, = 37,900).

10

. WLF-parameters (a,) .
10 SD = .019093 e

¢, = 3.64 'K./

3 ce = 180.7 [K) 7
10 T =28 [%)

2

d 10 T
‘..3'

1 /..a"'
10 ’.4//;/

] o
10 o/

-1
10 4 T 1 T

3.0 3.5 4.0 4.5 5.0

0007 (K"

Figure 5.22 Horizontal temperature shift factors ar and WLF-fit for PBD38. Reference
[73).
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Temperature-induced density changes result in a vertical shift factor (8]

Teeso(Trer)
To(T)

Its value is usually close to unity for moderate temperatures differences.

Time~temperature superposition of experimental data yields values of shift
factors ar and by at different temperatures so that the necessary parameters of Egs.
(57), (58), and (60) can be evaluated by regression techniques. If the parameters
E./R.Cy. Ca, Tv, and p(Trer)/ 0(T) are known, the constructed master curve can
be shifted to any temperature within the experimental range. Extrapolation of shift
factors to temperatures outside the experimental window is possible but should be
viewed with caution.

br(T:Ter) = (61)

5.5.4 NONISOTHERMAL FLOW

Processing flows are rarely isothermal, and the temperature variations severely
influence the stress. Hopkins [66] and Morland and Lee [67] suggested a sim-
ple modification of the memory integral equations to account for nonisother-
mal histories T(t') # Tr.r. The Boltzmann’s equation, Eg (4), may be rewritten
as coe

] N
(1) = / dl')'/(l') Zg'_ e—/(l:l’)/A: (62)
—o0 i=l
with an exponent
1 1 6 )
)= | dt”" —— 3
£ ) [ p—r (

The temperature shift factor changes along the path line of material elements ac-
cording to their temperature history ar(t”) = ar(Trs; T(+")). The nonisothermal
effects result in a stretching or compressing of the time scale. Conveniently, one
uses f(r; 1') as the new time. For isothermal flow, f reducesto f =7 —¢’. It should
be noted that Eqgs. (62)'and'(63) only apply to polymers for which the (TS principle
holds.

5.5.5 TEMPERATURE SCAN

The temperature dependence of molecular mobility in polymers can be mea-
sured by gradually increasing (or decreasing) temperature during small-amplitude
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oscillatory shear. This so-called temperature sweep or temperature scan (TS) is
a commonly used experiment in polymer rheometry. The frequency w is held
constant throughout and, hence, the experiment has been called isochronal TS (al-
though it is only isochronal with respect to the experimental time scale; the probed
material time scale changes with temperature). The choice of frequency is quite
arbitrary and limits the observation to molecular motions in the vicinity of a single
mode instead of a wider spectrum of relaxation times. The TS experiment is not
very informative for this reason.

In extension of this common procedure, the rheometer should be programmed to
probe, while heating a polymer sample, a sequence of frequencies w; within a fre-
quency window wmin < W; < Wmax. The sequence of frequencies may be repeated
cyclically during the temperature scan. The method requires that the sample be in
thermal equilibrium at all times, which seems to be the case for many rheometers -
even at moderate-to-high heating rates [19]. In this fashion, a single experiment
provides the temperature and frequency dependence of the relaxation spectrum.
The problem is that every data point in this experiment, which can be called
frequency—temperature scan (FTS), is taken at a new temperature, and data anal-
ysis requires interpolation. However, such data interpolation methods and their
limits of application arc well established (time-resolved rheometry, see Section
5.4). Modern rheometers allow a similar procedure, the FTS. In this experiment,
the polymer sample is probed at a cyclically repeated sequence of frequencies.
After each frequency sequence, the temperature is increased or decreased in pre-
programmed steps. Furthermore, one can perform several independent frequency
scans at different temperatures to achieve the desired frequency and temperature-
dependent data.

5.6 Applications of the Relaxation Time Spectrum

The relaxation spectrum describes the underlying features of all linear viscoelastic
material functions (except for the equilibrium modulus G, in solids). It contains
all necessary information about the relaxation behavior and therefore represents a
complete rheological picture of the material within the linear viscoelastic regime.
Many different material functions can be directly calculated from the spectrum.
For example, a dynanﬁg. mechanical experiment with data sets G'(w) and G"(w)
may be convegted into G(¢) and compared with the results from a stress relaxation
experiment, G (¢). Similarly, MS and creep experiments can be compared and
scrutinized for self-consistency. The MS data may be converted into a spectrum
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that defines the zero-shear viscosity no and first normal stress coefficient ¥
N

o = /o dAHQA) = gk (64)

im}

. - N
v =2 / dAAHO) =2 gid? (65)
0

iml

5.6.1 LINEAR VISCOELASTIC SIMULATIONS

The spectrum allows for the simulation of start-up of shear or extensional flow in a
sample that had been equilibrated at rest. Simulation involves the tensorial form of
the Boltzmann equation, see Appendix 5.A, which can be found in rheology text
books. For example, in a start-up and stress relaxation experiment, a material is
sheared initially with a constant strain rate yy for a time 5. The strain is then kept
at a constant value. During this experiment, the stress is recorded. In the linear
viscoelastic region, the shear stress z(¢) and the first normal stress difference Ni(n)
response during the initial shear, 0 < ¢ < , is given by [1]:

N
OE r‘u[G,: + il - e",'*')] . (66)

iml
N
M) =y [Ge’z + 228#?(‘ - (1 +‘t/k;)e"/*'):|
i=l

and during stress relaxation (1, < ¢)

T
) = yo[oeto + ZSI ie~-oN _ g=tik )] 6N

i=l

N
M) =y [G,zg +2) gidd(1=(1+1 /A,)e-:om)e—(:—n)/»]

fm}

Another example is the start-up of uniaxial extension at constant rate &,. The
first normal stress difference is predicted as [68):

N 1 - Zto).,-e’(l'u“‘)'ﬂ' 14 éolle-(“""l‘)'/*‘
O =T = Z&- -

68
I — 280h; I+ &oA; ] 68)

in]

5.6.2 FLOW MODELLING

The spectrum has been used in commercially available programs to simulate the
flow behavior of viscoelastic materials at large strains (for example, simulation
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software using finite element methods to study the flow in complex geometries).
The spectrum is an important part of large-strain constitutive equations [27, 69).

Flow modeling of polymer processing often relies on the steady shear viscosity
n(y) when only the relaxation time spectrum is available. Fortunately, for many
polymers heuristic relations exist that predict the viscosity from the linear relax-
ation time spectrum. An estimate of the flow curve n(y) may be based on the
Cox~Merz relation [70] between the steady and dynamic viscosity:

n(y) = r)'(w), =vG? +G?/w

wmy o=y
It w 2. T2 N 3
= LA 8iAi
B \J[§ I+ (M?)’] + [,Z,- 1+ (,\,.,-,)2] (69)

5.6.3 RELAXATION PATTERNS

A long-standing quest in polymer physics is the search for a relation of molecular
architecture and linear viscoelastic properties [8, 71, 72). Ideal molecular archi-
tectures are believed to generate some simple relaxation patterns. One example
for this simplicity in pattern detection is the BSW spectrum, which describes the
relaxation of a linear flexible polymer of uniform length (Eq. (6)). From all the
commonly used rheological material functions, this spectrum was preferred be-
cause it allows the most simple expression for the observed relaxation phenomena.
A look at the dynamic moduli G’ and G” (as, for example, shown in Figure 5.9)
does not easily reveal this simple pattern of the spectrum (Figure 5.4) that com-
pletely describes the linear viscoelastic relaxation behavior. Another example for
such an ideal spectrum is found with cross-linking polymers at their gel point,

Eq. (37).

Appendix 5.A Boltzmann Equation

The linear constitutive equation of a viscoelastic material following the Boltzmann
superposition principle is given by

(1) = /, dr' &(1 -ty (Al)

Various forms of the Boltzmann equation have been in use. It often is written in
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terms of strain y between states at 7 and ¢’

{1
y@: 1) = / dr"y(t") (A2)
. ’l
The Boltzmann equation is then transformed to
t
W= | dr'm@-1)y@;r) (A3)

m(s) = — (Ad)

with s =¢ — 1. The continuous spectrum may be introduced into the Boltzmann
equation, Eq. (4), to obtain

-] Anaz di 00
() = G,/ dsy(t —s) +/ —H(Q) / ds e"’/")'l(t —-5) (AS)
0o - - ’ o A 0

Calculations with the spectrum are as convenient as with the relaxation modulus.
Both need to be considered on an equal footing.

Tensorial forms of the Boltzmann equation are required for flow simulations
(as shown in Section 5.6.1). These use the velocity gradient tensor 7v and the
extra stress tensor T

r= f dt'Glt — YTV, ) + Tuix, £)T) (A6)

and the Finger strain tensor B(¢; 1) {75, 69)

!

=GBt 1) + / de'm(t - :')B(:;:’) (A7)

-00

No new material properties need to be introduced. B(¢; 7o) denotes the strain with
respect to the stress-free state at equilibrium.

Appendix 5.B  Related Material Functions

The small amplitude oscillatory shear experiments can be expressed in many dif-
ferent ways that are all related to G’ and G”. The most common of these functions
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are
complex modulus G*(w) = \/G_”+—G75 (81
complex viscosity n*(w) = m/w (B2)
loss tangent tand = G"/G’ (B3)
dynamic viscosities  n'(w) = G"/w and 7"(w) =G'/w (B4)
stiffness S(@) = —57~ G'(@) (BS)
o' " cosé T'(1-26/x)

relaxation exponent  n(w) = 28/x ’ (B6)
dynamic compliances J'(w)= -C-;—,Z—_C:I-E and J"(0) = Ez.{.—ngﬁ

' (B7)

where I'(x) is the gamma function.

References

0NN H W -

12.
13.

. H. M. Laun, Rheol. Acta 17: 1-15 (1978).

. Y. Einaga, K. Osaki, M. Kurata, S. Kimura, and M. Tamura, Polym. J. 2: 550 (1971).

. K. Osaki, Rheol. Acta 32: 429-437 (1993).

K. Osaki, Proc. 7th Int. Congr. Rheology, Gothenburg: 104109 (1976).

. M. H. Wagner, Rheol. Acta 15: 136-142 (1976).

F. Chambon and H. H. Winter, Polym. Bull. 13: 499-503 (1985).

. H. H. Winter and M. Mours, Adv. Polym. Sci. 134: 165-234 (1997).

. 1. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., John Wiley & Sons, New York,
1980.

. P.E. Rouse, J. Chem. Phys. 21: 1272-1280 (1953).

. P. G. de Gennes, J Chem. Phys. 55: 572 (1971).
.

M. Doi and S. Edwards, The Theory of Polymer Dynamics, Clarendon Press, Oxford,
1986; M. Doi, Chem. Phys. Lett. 26: 269-272 (1974); M. Doi and S. F. Edwards, J:
Chem. Soc. Faraday Trans. 11 74: 1789-1832 (1978). ;

J. des Cloizeaux, Euro. Phys. Lett. 5: 437 (1988); Macromolecules 23: 4678 (1990).
K.S. Schweizer,J Chem. Phys. 91: 5802 (1989); J Chem. Phys. 91: 5822-5839 (1989);
J. Chem. Phys. 103: 1934 (1995); J. Chem. Phys. 103: 6296 (1995); J. Chem. Phys.
106: 347 (1997). :

. S.T. Milner and T. C. B. McLeish, Phys. Rev. Let. (1998).



544

15.

16.

17.
18.

19.
20.

21.
22.

23.
24,
25.
26.
27.

28.
29.

30.

iL

32

33.

34,

3s.

36.

kYR

8.
39.

M. Mours and H. H. Winter

M. Baumgirtel, A. Schausberger, and H. H. Winter, Rheol. Acta 29: 400-408
(1990).

J. K. Jackson, M. E. De Rosa, and H. H. Winter, Macromolecules 27: 2426-2431
(1994).

G. C. Berry and T. G. Fox, Adv. Polym. Sci. 5: 261 (1968).

B. Gross, Mathematical Structure of the Theories of Viscoelasticity, Hermann & Cie.,
Paris (1953).

M. Mours and H. H. Winter, Rheol. Acta 33: 385-397 (1994).

E. E. Holly, S. K. Venkataraman, F. Chambon, and H. H. Winter, JJ Non-Newtonian
Fluid Mech. 27: 17-26 (1988).

M. Reiner, Physics Today, Jan: 62 (1964).

N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behawor,
Springer-Verlag, Heidelberg, 1989.

A. Schausberger, G. Schindlauer, and H. Janeschitz-Kriegl, Rheol. Acta 24: 220
(1985).

1. K. Jackson and H. H. Winter, Macromolecules 28: 3146-3155 (1995).

H. Watanabe and T. Kotaka, Macromolecules 17: 2316 (1984).

S. H. Wassermann and W. W, Graessley, J Rheol. 36: 543 (1992); S. H. Wassermann,
J. Rheol. 39: 601 (1995).

R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. 1,
John Wiley & Sons, New York, 1987. ’ .

K. Walters, Rheometry, Chapman and Hall, London, 1975.

J. M. Dealy and K. F. Wissbrun, Melt Rheology and its Role in Plastics Processing,
Van Nostrand Reinhold, New York, 1990.

C. W. Macosko, Rheology: Principles, Measurements, and Applications, VCH Publ,
Inc., New York, 1994,

G. Marin, Rheological Measurement, 2nd ed., A. A. Collyer and D. W. Clegg, Eds,,
Chapman & Hall, London, 1998.

H. M. Laun, Characterization of Wall Slip of Polymer Melts and its Relevance to Poly-
mer Processing, Proceedings of TUPAC Conference, p. 11, World Polymer Congress,
Australia, 1998.

M. Wilhelm, D. Maring, and H. W. Spiess, Rheol. Acta 37: 399405 (1998).

J. A. Yosick, A. J. Giacomin, W. E. Stewart, and F. Ding, Rheol. Acta 37: 365
(1998).

A. J. Giacomin and J. M. Dealy, Rheological Measurement, A. A. Collyer and D. W.
Clegg, Eds., Chapman & Hall, London, 1998.

J. M. Simmons, Rheol. Acta 7: 184188 (1968) and R. 1. Tanner and G. Williams,
Rheol. Acta 10: 528-538 (1971).

G. B. McKenna and L. J. Zapas, Polym. Engr. Sci. 26: 725-729 (1986); J. Polym. Sci.,
Phys. Ed. 23: 1647-1656 (1985).

L. Walker, J. Vermant, P. Moldernaers, and J. Mewis, Rheol. Acta (1998).

C. Friedrich and B. Hofmann, Rheol. Acta 22: 425-434 (1983).

NP PRI SIPURT R

0 et W SR ot g G et

satan i

PR FERE I £ ¥ TR A oot A

R R T R



40.

41.
42.
43.
. D. W. Mead, J Rheol. 38: 1769-1795 (1994).
45.

46.
47.
48.

49.
50.
Sk
52,

53.

54.
55.
56.
57.
58.
59.
. T. Inoue, H. Hayashihara, H. Okamoto, and K. Osaki, J Polym. Sci. 30: 409-414

61.
62.

63.
. H. Vogel, Physik Z, 22: 645646 (1921).
65.
66.
67.
68.
69.

70.

5. Mechanical Spectroscopy of Polymers 545

J. Honerkamp and J. Weese, Macromolecules 22: 4372-4377 (1989); Rheol. Acta 32:
65-73 (1993).

V. M. Kamath, M. R. Mackiey, /. Non-Newtonian Fluid Mech. 32: 119-144 (1989).
F. Schwartzl and A. J. Staverman, Appl. Sci. Res. A 4: 127141 (1953).

M. Baumgiirtel and H. H. Winter, Rheol. Acta 28: 511-519 (1989).

1. Emri and N. W. Tschoegl, Rheol. Acta 31: 161-174 (1993); Rheol. Acta 32: 322-327
(1993); Rheol. Acta 33: 6070 (1994).

N. Orbey and J. M. Dealy, J. Rheol. 35: 1035-1049 (1991).

J. Kaschta and F. R, Schwarzl, Rheol. Acta 33: 530-541 (1994).

A. J. Staverman, F. Schwarzl, In: Die Physik der Hochpolymeren, Vol. 4, Springer-
Verlag, Berlin, 1956.

J. K. Jackson, C. Garcia-Franco, and H. H. Winter, ANTEC 38: 2438-2442 (1992).
M. Baumgirtel and H. H. Winter, J. Non-Newtonian Fluid Mech. 44: 15-36 (1992).
H. Nyquist, Trans. Amer. Inst. Electn Eng. 47: 617644 (1928).

H. H. Winter, M. Mours, M. Baumgirtel, and P. Soskey, Rheological Measurement,
2nd ed., A. A. Collyer and D. W, Clegg, Eds., Chapman & Hall, London, 1998.

V. A. Mozorov, Methods for Solving Incorrectly Posed Problems, Springer, Berlin,
1984.

R. L Tanner, J. Appl. Polym. Sci. 12: 1649-1652 (1968).

H. C. Booij and G. P. J. M. Thoone, Rheol. Acta 21: 15-24 (1982).

K. te Nijenhuis and H. Dijkstra, Rheol. Acta 14: 71-84 (1975).

G. Marin, J. J. Labaig, and P. Monge, Rheol. Acta 16: 527 (1975).

J. C. Scanlan and H. H. Winter, Makrom. Chem., Makrom. Symp. 45: 11-21, (1991).
H. H. Winter, P. Morganelli, and F. Chambon, Macromolecules 21: 532-535 (1988).

(1992).

R. H. Colby, Polymer 30: 1275-1278 (1989).

J. A. Pathak, R. H. Colby, S. Y. Kamath, S. K. Kumar, and R. Stadler, Macromolecules
31: 8988-8997 (1998).

M. L. Williams, R. F. Landel, and J. D. Ferry, J. Amer. Chem. Soc.77: 3701-3707(1955).

G. S. Fulcher, J Amer. Cer. Soc. 8: 339-355, 789-794 (1925).

L. L. Hopkins, J. Polym. Sci. 28: 631 (1958).

L. W. Morland and E. H. Lee, Trans. Soc. Rheol. 4: 233-263 (1960).

H. Chang and A. S. Lodge, Rheol. Acta 11: 127-129 (1972).

R. G. Larson, The Structure and Rheology of Complex Fluids. Oxford University Press,
New York, 1999.

W. P Cox and E. H. Merz, J Poly. Sci. 28: 619-622 (1958); D. Doraiswamy,
A. M. Mujumdar, I, Tsao, A. N. Beris, S. C. Danforth, and A. B. Metzner, J. Rheol. 35:
647685 (1991); Y. G. Lin, P. W. Jin, J. C. W. Chien, and H. H. Winter, Polymer 30:
831-834 (1989).



546 M. Mours and H. H. Winter

71. W. W, Graessley, Adv. Polym. Sci. 16: 1-179 (1974); G. Marin, W. W. Graessley, Rheol.
Acta 16: 527 (1977); V. R. Raju, E. V. Menezes, G. Marin, W. W, Graessley, L. J.
Fetters. Macromolecules 14: 1668-1676 (1981); W. W. Graessley, Adv. Polym. Sci. 47:
68 (1982); D. Pearson. Rubber Chem. Tech. 60: 437 (1987).

72. M. Rubinstein, E. Helfand, and D. Pearson, Macromolecules 20: 822 (1989).

73. M. Mours and H. H. Winter, Macromolecules 29: 7221-7229 (1996).

74. H. H. Winter, J Non-Newtonian Fluid Mech. 68: 225-239 (1997).

75. A.S. Lodge, Elastic Liquids, Academic Press, New York, 1964.



Corrections for Mours M, Winter HH (2000) Mechanical Spectroscopy. Tanaka T,
Ed, Experimental Methods in Polymer Science: Modern Methods in Polymer Research
and Technology, Academic Press, San Diego CA. p. 495-546.

Change the equatlon
® N
_2(dx 1 g,
= l— —— —— 50
Z 1+(a)/1) Ty elx Z I+ (0, (50)
gl ? 2% 1 Y g
¢ “~ dx i’ 50
o Z iy 7T o Ly 9
Change the equation
N
A 2%dx 1 1 '
ng’li FEATECIRE e a =t =0 (51).
1+(xA4)° 7 x o +x" 1+(x4;)
A 1
into _ =0 51).
Zg, '{1+(a)/1) ! -x* 1+(x4,)* } 1)
Change the equation
E
C,=———2—— C,=(T,-T, 59).
1 R(Tref _TV) 2 ( ref V) ( )
into ¢, =—2Fr . ¢ =T, -T,) (59)
' RC,In10’ o '
Change the equation
N —t1 4
r(t)=y'o(Got—Zg,-(1—e )j (662)
i=1
N -t/ A
into 7(t)= 70[Got - Zg,ﬂi (1-e )) (66a)
i=1
Change the equation
N —t/ A
N,(t) = yoz[Gotoz —2> g A (1-(1+1/4)e )) (66b)
i=l
N -1 4
into  N,(¢) = 702(Got2 -2 g A (1-(+t/A)e )J (66b)
i=1
change equation (B.5):
. G'
S(w)= () into S(w) = (@)
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