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On network models of molten polymers:
Loss of junctions due to stretching of material planes
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1. Introduction

During the last two decades a considerable
amount of research has been devoted to finding
rheological constitutive equations (also called
“models”) of polymeric liquids. Depending on
the assumptions made in the derivation of these
models, they can be classified into certain
groups, see for instance (1).

One group of these are the so-called network
models. It consists of the rubberlike liquid
equation by Lodge (2) and its modifications.
If the memory function m is assumed to depend
on the strain history, the constitutive equation
has the form

o(t) = —pl +_f m(t,t,C"HC 1 (t)dr, [1]

o = stress at time ¢, Pa; p = pressure level, Pa;
m(t,t,C~ ') = memory function, Pas™!;
C~1(t) = Finger tensor; t' = time previous to
time t.

The stress at time ¢ is assumed to depend on
the strain history previous to time t. Network
theory assumes that temporary junctions are
formed between the macromolecules. The junc-
tions which are formed at time ¢’ (also called
state ' of the material) change their relative
distances during the deformation from state ¢’
to state ¢t. Consequently there is a contribution
to the stress from these junctions; the contri-
bution is proportional to the deformation from
state ¢’ to state t. The total stress at state ¢t then
is the integral of the stress contributions from
all past times ¢’ up to the present time ¢.

The Finger tensor C~!(t) is a measure of the

strain involved in the deformation from t' to t.

It is the contravariant metric of an embedded
coordinate system that becomes orthonormal at
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state t. The state t is not mentioned explicitly in
describing the strain between ¢’ and t by means
of the Finger tensor. However, by choosing the
embedded coordinate system to be orthonormal
at state t, the components of C~1(¢’) also depend
ont.

In polymer melts and concentrated polymer
solutions, temporary junctions such as entangle-
ments are created and lost at finite rates. The
stress contribution of a deformation t' -t is
the larger, the more junctions of the past state ¢’
are still functioning at the present state t. In a
first mechanism, junctions may break due to the
thermal mobility of the macromolecules at rates
determined by time constants A;; the same time
constants are also assumed to determine the
rate of creation of junctions. In a second
mechanism, junctions may also break due to
large deformations t' — t. The creation and the
loss of junctions is described in the memory
function m(t,t’,C™1).

In the rubberlike liquid equation, the memory
function depends just on the time interval

t-1)
t—t
- ) 2]

m(t,t,C™ )= pu(t —t)
G; = moduli of linear viscoelasticity, Pa; 4; =
time constants of linear viscoelasticity, s, at
constant temperature and pressure.

An alternative formulation of eq.[2] would
be by means of a continuous relaxation spectrum.

.p is the memory function of linear viscoelasticity.

The moduli and relaxation times are assumed
to be time independent.

If the relaxation times are time dependent
(due to temperature changes with time, for in-
stance), the memory function contains a time
integral (3) o S
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In the derivation of this memory function it

- is assumed that junctions in the network break
in a first-order reaction.

Egs.[1] and [2] describe, as experiments
show, the rheological behavior at strains of
magnitude 1—3 and below (4). This is a great
success of the network theory. However, the
deformation of molten polymers in industrial
processes exceeds this value by orders of
magnitude and it has been a task in recent years
to modify the rubberlike liquid equation, so
that it also may be valid for flows with large
deformations.

The rubberlike liquid equation overempha-
sizes the non-linear effects in large deformations.
In molten polymers, there seems to be an ad-
ditional mechanism for losing memory of pre-
vious states of strain, i.e. for breaking junctions.
It has been suggested by Kaye (5) and by Bern-
stein, Kearsley and Zapas (6) that this ad-
ditional breaking of junctions depends on the
invariants II, I of the stress at time ¢ or of the
strain between ¢’ und t. Several authors (7 —10)
specifically assumed that the memory function
is a product of two functions

m(t,t,C™Y) = h(I¢-1,1c-1) p(t,t), [4]

where h is the damping function and p is the
memory function of linear viscoelasticity as
shown in eq. [2] or eq. [3]. The scalar damping
function depends on the first and second in-
variant of the Finger tensor C~'. At the limit
of small strains, h will approach unity.

The question now arises as to what is the
appropriate formulation of the damping func-
tion. There are several plausible simple com-
binations of the two strain invariants. Wagner
(10) uses published experimental data on simple
shear and on uniaxial extension of low density
polyethylene to find that a damping function
of the form

h=exp(—n)/Il¢c-: — 3) [5]

describes the experiments best, at least in shear.
For uniaxial extension it seems difficult to de-
cide to what degree the first invariant /-1 has
an influence on the damping function of eq. [4].

Note that the damping function h describes
an instantaneous loss of junctions, i.e. the loss
supposedly does not require time as would a

rate process. A transient strain (impuls strain)
of magnitude &, then has the same effect on
existing network junctions as a strain ¢, of long
duration (step strain), for instance.

This procedure of finding an appropriate
damping function is rather arbitrary. It would
be helpful to know which combination of the
strain invariants should be used to define the
strain-dependence of the memory function. The
applicability of the constitutive equation would
then not be restricted to certain types of flow rich
as shear or uniaxial extension. The goal of this
study, therefore, shall be to define the damping
function in a more, specific way. It will be shown
that the invariants of the Cauchy tensor C(t')
or the equivalent invariant of the Finger tensor
C~1(t) have a geometrical meaning, which
makes it possible to relate the loss of junctions
to the maximum stretch of material planes
instead to the strain in general.

2. Stretch of material planes

During the deformation from state ¢’ to state
t, material planes within the bulk of the material
change their area. If the area of a plane decreases,
the junctions positioned in that plane move
closer together and a stress correspondingly
builds up. If the area of a plane increases during
‘the deformation, the distance between the junc-
tions also increases. From the transient nature
of the junctions one should assume, that the
distance between junctions cannot be increased
indefinitely without breaking them or without
increasing the probability of breakage. If the

‘material planes with maximum stretch would

be known for a flow, their stretch could be used
as a measure for breaking junctions.

In a deformation, material planes do not
only stretch, but they also move parallel to each
other. This parallel displacement will not be
used in the following study, although it might
cause some additional increase of distance be-
tween junctions.

2.1. Stretch measure

A small element in an isotropic continuum
is deformed uniformly from state t' to state t.
The deformation is described by the covariant
metric

(6]

CU = &;" ej
of a material coordinate system e,,e,,es, which
is orthonormal at state t. At state t the metric
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tensor reduces the unit tensor, C (t) = 1. Tensor A(t) 1
C is called the Cauchy tensor. AW) ) be 7]

A gradient of the deformation is assumed to
have no influence, i.e. the neighborhood of a
material point P is taken to be so small, that the
deformation is practically uniform. Material
planes then remain plane during the deforma-
tion.

To demonstrate the stretching of arbitrary
material planes, we mark a material surface S
around a material point P in the small material
element, see figure 1. Point P is the origin of
the embedded coordinate system e;. At state ¢,
the material surface S is chosen to be a sphere of
unit radius. During the deformation at states
prior to state ¢, surface S had the shape of an
ellipsoid.

Now we chose an arbitrary material plane
through P, which cuts the ellipsoid at state ¢’
and, correspondingly, the sphere at state ¢ into
two equal parts. The area of the cut changes
from the area A(t) of an ellipse to an area A(r)
of a circle of unit radius. While at state t' the
area A(t) depends on the direction of the cut
and on the strain, the area A(t) is the same for
all possible cuts.

The planes perpendicular to the three principal
axes of the ellipsoid are called the principal
planes. If a, b, ¢ are the lengths of the three
principal axes of the ellipsoid ordered pro-
ceeding from the largest to the smallest, the
areas of the ellipses on the principal planes are
nab, nbc, nca. The areas nab and nbc are the
largest and the smallest areas, respectively, of
all possible cuts through P.

The plane which is stretched the most is the
one with the smallest ellipse. The maximum
relative increase of area in any material plane
. through P would be

The largest principal axis, a, is not used here,
but it must be known to be able to distinguish
the two smallest principal axes.

For formulating a constitutive equation, it
would be more convenient to define a stretch
measure without explicitly distinguishing be-
tween the different lengths of the principal axes.
This can be done by averaging the relative in-
crease of area of the three primary planes. The
average value is dominated by the plane which
stretches the most, if the square of the areas is
taken:

Gy =31 + G ()]
A%(t) 3| \ab bc ca
a? +b*+c?
T T 3223 (8]

a stretch measure

2 1/2
&p (t’ t’) = <'%z(%

can be defined. This stretch measure describes
the average increase of distances between ma-
terial points or between junctions, when the
material deforms from state ' to state t. The
index p shall emphasize that the average is
taken with a preference to the plane of maxi-
mum stretch. The 1/2th power is chosen, to that
¢, can be explained to be a relative change in
area.

-1 [9]

2.2. Principal axes of the strain ellipsoid

The ellipsoid in figure 1 is completely described
by the Cauchy tensor ((2), p. 46). It is called the
strain ellipsoid. The principal values a?,b%,c? of

Fig. 1. Strain ellipsoid at state ¢,
which changes into a sphere of
unit radius at state ¢. The three
ellipses are on the principal planes
of the ellipsoid

state t
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the ellipsoid are also the principal values of the
Cauchy tensor C(t'); they are functions of its
three invariants

Ic = Cyy + Cyy + Cs3, [10]
I = C Cyy + Cy5C33 + C33Cyy '
~ Cy— Cly - Chy, [11]

HI, =detC. [12]

From .these equations, it can be derived that
a* + b+t =1Ig, [13]
(abc)? = 11l. [14]

With these expressions, the scalar stretch
measure becomes

I 1/2
HLl) = <3IICI ) ~ 1
C

If the density is constant, the third invariant
assumes the value 1. The stretch measure of
eq. [15] can also be determined from the in-
variants of the Finger tensor

He-(]"% — 1. [16]

Note that there is something arbitrary about
defining the stretch measure by means of stretch-
ing planes instead of stretching lines. A stretch
measure for stretching of lines could be derived
using the above procedure. If I(¢') and [(¢) are
lengths between two material points at states t’
and ¢, a stretch measure could be defined as

2 1/2
s,=<lz(t) -1
()
_[1(1 NETRERY
R EAV N

= E 10_1] S [17]

The first and the second invariant of the Finger
tensor describe the maximum stretch of material
lines and of material planes, respectively. The
third invariant describes volume changes.

[15]

3. Constitutive equation with stretch
dependent memory

The derivation of the constitutive equation
does not prescribe a specific formulation of the
damping function. The most simple damping
function is

h(t,t') = exp[—ne,(t,t)] [18]

where n is a material constant to be determined
from experiments. This simple damping function
should be examined before one choses more
complicated relations.

The damping function of eq.[18] is practi-
cally the same as to the damping function of eq.
[5], which has been determined from experi-
mental data. The success of this type of damp-
ing function, as shown by Wagner (10), suggests
that stretching of material planes is responsible
for the increased loss of junctions in flows with
large deformations.

The complete constitutive equation as de-
scribed above would be the rubberlike liquid
equation, eq. [ 1], with a memory function

m(t,t,C™") = [exp (—n(llc-1/3)""* + n)]

N G; < todt” >
- ) —exp| - — ). [19
i=1 Ai - zf Ai(t") J

In the following, the stretch measure will be
calculated for three types of flow. While in shear
the planes of maximum stretch change during
the deformation, at irrotational flow such as
uniaxial extension or biaxial eéxtension, the ma-
terial planes of maximum stretch are the same
during the whole deformation.

3.1. Unidirectional simple shear

The material is deformed with a shear rate
7(t'). The shear between state ¢’ and state ¢ is
t
y() = — [p@)ar. [20]
.
If the shear rate is constant in the whole time

interval, the shear is proportional to the time
difference. )

y(E) = —p@ — t). [21]

An embedded coordinate system is chosen,
which at state ¢ is defined by e, in the direction
of shear, e, perpendicular to the shear surfaces,
and e; perpendicular to e; and e,. The com-
ponents of the Cauchy tensor with respect to
the orthonormal frame are

[22]

- o Qo

Ly
CeN=[r t+
0 0
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The value of the stretch measure of uniaxial
simple shear

e, (1) = (1 + y%/3)* — 1 [23]

depends on the shear. The volume is assumed
to be constant. For large strains, the stretch
measure approaches (0.574|y] — 1).

3.2. Uniaxial extension

A material is extended in one direction at a

rate
1 d61

€y dt,

and can deform freely in the plane perpendicular
to the direction of extension: .
e (t') = es(t). [25]

The volume is assumed to stay constant during
the deformation. An embedded coordinate sys-
tem is chosen along the principal axes of strain.
The values of the embedded coordinate vectors
are

e,(t) =expe, [26]
ey (t') = es(t') = exp(—¢/2), [27]

where the elongation ¢ is given by the integral

[28]

E() [24]

et) = — fé(r') dr' .

The components of the Cauchy tensor are

exp2e O . 0
cEn=1{0 exp(—¢) O . [29]
0 exp (—é)

The stretch measure of uniaxial extension is

g, (t,t) = [fexp2e + 3exp(—¢)]'? — 1. [30]

3.3. Biaxial extension
A material is extended in two directions

1 de, 1 de,

dr e, dt'

while it can deform freely in the third direction.
The length of the three embedded vectors
along the principal axes of strain are

= £ (t);

L) [31]

€

e, (') = expe,,
ex(t') = expe,,

es(t) = exp (— 1) exp(—&2).

[32]

The volume is assumed to remain constant.
The elongational strains are

t
&(t) = — [& ()t ;

ealt) = — &) dr . [33]

The components of the Cauchy tensor are

(C)
exp2eg; O 0

=10 exp2e, 0 .
0 0 exp(—2¢,)exp(—2¢,)

The stretch measure of biaxial extension is
&p(tst) = [3{exp2e; + exp2e,
+ exp(—2¢;,)exp(—2¢&)} 14 - 1.
[35]

If the rate of extension is the same in the two

directions, &, = ¢, = ¢, the stretch measure be-
comes

&, (t,t) = [$exp2e + fexp(—4¢)]'* — 1.[36]

4. Conclusion

The stretch measure ¢, for unidirectional
simple shear, for uniaxial extension and for bi-
axial extension (with ¢, = &,)is shown in figure 2.

biaxial .
extension,
€ =6€:=€| |

! 2

~

uniaxial extension

simple shear

=15 -10 -

strain y(t'),e (') ——>
Fig. 2. The value of the stretch measure ¢, as a function
of the strain in unidirectional simple shear, in uni-
axial extension, and in biaxial extension withe;, = ¢, = ¢

(6}

streich measu

20

o

o

re €, ——>
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In shear, the stretch measure increases linearly
and in elongation it increases exponentially with
the value of the strain. With figure 2 and eq.
[18], the value of the damping function can be
calculated. A comparison with measured damp-
ing functions for shear and elongation will show
- whether the selected form of the damping func-
tion is adequate or a new one should be tried.
If it describes the behavior of the polymer in
shear and in elongation, it has to be further tested
in more general types of flow. It is hoped that
by means of the stretch measure a single form
of the damping function can be found.
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Summary

In a deforming continuum, material surfaces change
their area. If material points are members of a surface
which stretches during the deformation, these maierial
points increase their relative distances. The continuum
is modeled by a network of macromolecules which
form temporary junctions between each other. Junc-
tions on a stretching material surface increase their
distance. As a consequence, the probability of junction
breakage is increased.

The stretching of material planes through a material
point is described by means of an embedded coordinate
system. The metric of this coordinate system is the
Cauchy tensor C. A stretch measure ¢, is defined for
arbitrary flows. The stretch measure is used to formu-
late a memory function in a rheological constitutive
equation for large strain. Specific applications are
made to unidirectional simple shear, uniaxial ex-
tension and biaxial extension.

In a consecutive study, comparison with experiments
will demonstrate to what degree the selected memory
function can describe the actual behavior of the
polymer.

Zusammenfassung

Materie-Fliachen in einem Kontinuum dndern ihren
Flicheninhalt, wenn sich das Kontinuum deformiert.

Punkte auf einer Materie-Fliche vergroBern ihre Ab-
stinde, wenn die Fliche gedehnt wird. Das Kontinuum
stellt man sich als ein Netzwerk von Makromolekiilen
mit temporiren Knotenpunkten vor. Knotenpunkte
in einer sich vergroBernden Fliche vergroBern wihrend
der Deformation ihren Abstand. Als Folge davon er-
hoht sich die Wahrscheinlichkeit, daB sich diese Knoten
Iésen.

Mit einem eingeprigten Koordinatensystem wird
beschrieben, wie sich ebene Materie-Flichen, die durch
einen Punkt der Materie gehen, vergroBern oder ver-
kleinern. Mit der Metrik des Koordinatensystems, dem
Cauchy-Tensor C, wird ein Dehnungsmall ¢, fiir
Stromungen beliebiger Art definiert. Dieses Dehnungs-
maB wird dazu verwendet, die Gedichtnisfunktion
einer rheologischen Stoffgleichung fiir groBe Deforma-
tionen zu formulieren. Das DehnungsmaB wird fiir be-
sondere Strémungen wie die einfache Scherung, die
einachsige Dehnung und die zweiachsige Dehnung
berechnet.

In einer spiteren Arbeit soll durch Vergleich mit
Experimenten gezeigt werden, inwieweit die gewihlte
Gedichtnisfunktion das Verhalten von Polymerschmel-
zen wiedergibt.
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