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Abstract: The analysis of dynamic mechanical data indicates that linear flexible
polymer chains of uniform length follow a scaling relation during their relaxa-
tion, having a linear viscoelastic relaxation spectrum of the form H(A) = n,G%
X(A/dgy)™ for A=< A,,,. Data are well represented with a scaling exponent of
about 0.22 for polystyrene and 0.42 for polybutadiene. The plateau modulus
G%, is a material-specific constant and the longest relaxation time depends on
the molecular weight in the expected way. At high frequencies, the scaling
behavior is masked by the transition to the glassy response. Surprisingly, this
transition seems to follow a Chambon-Winter spectrum H(A) = CA "2, which
was previously adopted for describing other liquid/solid transitions. The analysis
shows that the Rouse spectrum is most suitable for low molecular-weight
polymers M =M,, and that the de Gennes-Doi-Edwards spectrum clearly
predicts terminal relaxation, but deviates from the observed behavior in the
plateau region. '
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1. Introduction and background

The most simple polymer one might consider has
linear flexible molecular chains, all of the same length
(monodisperse). The chains should form a system free
of any ordering transition (crystallization, phase
separation). Relaxation occurs by motion of the
macromolecules within the constraint of their sur-

rounding molecules. Extensive progress has been

made in finding ways to describe this relaxation
phenomenon, and many details of the molecular mo-
tion processes are known [1 —7]. Correlations could
be made between molecular parameters and macro-
scopic properties, such as longest relaxation time,
plateau modulus, and recoverable compliance. Be-
tween all this insight, it is somewhat aggravating that
the relaxation spectrum of the linear flexible
monodisperse (LFM) polymer has evaded all attempts
at providing a quantitative description. This can be
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seen by simply plotting the dynamic modulus, as
predicted by a Rouse spectrum [1]

N
G(t)=g ¥ e 't | N»i (1)

i=1

or by a GDE-spectrum [3, 4]

N
Gt)y=g ¥ i 2e '®imx Nyt )]
i=1,3,5

against measured relaxation moduli of nearly LFM
polymers. In the formulas, the front factor g and the
Iongest relaxation time A,,, depend on molecular
weight and temperature. In each case, the spectrum
evolved from a model for the molecular motion. Mo-
lecular details are explained by the original authors.
Here we want to focus on the shape of the spectrum.
The large deviations between predicted and measured
relaxation behavior initiated extensive attempts to
mend the theory by including more and more details
of possible molecular interactions [4].
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Fig. 1. Storage modulus a) and loss modulus b) of PS samples of Schausberger et al. [9]. The molecular weight and the
polydispersity of the samples is PS-1: M, = 34000, M, /My=1.05; PS-2: M, =65000, M,/My=1.02; PS-3:
M, = 125000, M,/My=1.05; PS-4: M, =292000, M,/My=1.09; PS-5: M, =757000, M, /My=1.09; PS-6:

M, = 2540000, M, /My = 1.13. The reference temperature is 7, = 180°C

With this promising and, on the other hand,
bothersome historical development in mind, we pro-
pose analyzing experimental data of (nearly) LFM
polymers and abstracting them into a general picture.
The relaxation spectrum of LFM polymers is expected
to be very simple due to the highly idealized nature of
the problem. This simplicity will make it possible to
come to a solution.

Measured dynamic moduli of nearly LFM polymers
are available in the literature [8 — 10]. We will use the
data of Schausberger et al. [9] and Colby [10],
because their data were made available to us in
tabulated form (Figs. 1 and 2). The molecular param-
eters have been reported by the original authors.
These experimental observations are necessarily bi-
ased by not being able to make a perfectly
monodisperse polymer. For this reason, the polymers
are termed nearly LFM polymers. In addition, the
closeness to the glass transition alters the high fre-
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Fig. 2. Dynamic moduli of nearly monodisperse polybuta-

diene with M, =92500. The data were supplied by Dr.

Ralph H. Colby from his PhD thesis [10}

quency side of G’ (w), G"”(w) in some unknown way.
The data seem to be taken with great care, and possi-
ble systematic or statistical errors are considered to be
small.

The data will be replicated by a standard (IRIS pro-
gram) procedure [11], which chooses a discrete set of
exponential decays:

N
G)= Y ge "M, 3

i=1

The discrete relaxation modes g;, 4;, i =1,2,...N, as
tabulated in Table 1, give an excellent fit of the data
(see line through data in Figs. 1 and 2). All the ex-
perimental information is well represented by the
discrete parameter set.

It is worth noting that no claim is made that the
spectrum has to be discrete as compared to con-
tinuous. The result of this study will actually be a con-
tinuous spectrum, while the discrete representation is
only an intermediate state in our analysis.

The following derivations will rely heavily on
graphical methods. Therefore, an unusually large
number of graphs will be needed. Also, we will use the
word spectrum interchangeably for G(f) and for
H(\), see Eq. (6) below.

2. Analysis of the discrete spectrum

The parameters of the discrete modes show a
systematic pattern (Fig. 3). Within all the scatter, the
short modes seem to group along a straight line of
negative slope, while the long modes seem to follow
a straight line of positive slope. This is a rather re-
markable observation. Two basic relaxation processes
are superimposed, and we are able to decouple them
into a liquid like and a glassy contribution:
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Table 1. Discrete relaxation spectra of polystyrene stan-
dards PS-1...PS-6. The relaxation modes g, A,
i=1,2,...,N were calculated from the dynamic mechani-
cal data (Fig. 1) using the IRIS program [11]

PS-1 PS-2

8i A; &i A

[Pa] [s] [Pa] {s]

3.31 10% 1.56 107? 9.57 10* 7.99 103

1.70 10° 5.10 10~* 9.12 10* 1.73 1073

8.69 10° 2.57107° 1.13 10° 3.04 10~*
5.26 10° 4.96 10~°

PS-3 PS-4

&; A &i A;

{Pa] s [Pa] [s]

6.40 10* 1.14 10! 598 10°  5.79 10°

5.75 10* 3.32 1072 6.30 10* 1.86 10°

4.64 10* 8.14 1073 4,63 10¢ 4.80 10-1

5.95 104 2.24 107} 4.17 10¢ 1.07 10!

8.32 10* 4.15 10™¢ 3.68 10* 1.94 102

5.05 10° 6.51 10~5 4.13 10* 3.06 1073
6.47 10 5.55 10~
5.26 10° 6.92 10~°

PS-5 PS-6

LS Y 8i A

[Pa] [s] [Pa] [s

4.74 10 1.68 10? 1.99 10¢ 7.79 10

6.93 10¢ 4.81 10! 5.33 10 2.66 10°

4.27 10% 8.86 10° 4.34 10* 7.37 10?

3.56 10* 1.52 10° 3.33 10¢ 1.36 107

2.55 10* 2.87 10~! 2.44 10¢ 2.38 10

1.75 10 4.50 10~2 1.60 10 4.21 10°

2.16 10* 5.98 107} 1.04 104 7.32 10~!

4.99 10* 8.06 10~4 8.64 10° 1.29 10-!

3.58 10° 1.05 104 9.24 10° 1.90 10~2
2.53 10* 2.26 10-3
9.52 10* 3.74 104
1.01 108 2.68 1073

Ny Ny
Gt)= ¥ gie” i+ T gy 0™ @

i=1 i=1

flow regime  glassy regime

The second observation is that the short modes of
all polystyrene samples sit on the same line, while the
long modes describe parallel lines, as sketched in
Fig. 3 (i.e., same slope, but spaced out). The short
modes are attributed to the glass transition, which is
independent of molecular weight.

™ PS-1 o PS—4 X PBD
10' ~ © PS-2 4 PS-5

-4 '0' 2 4
10 10 . 10 - 10 10
A [s]
Fig. 3. Discrete relaxation spectra of the model polymer of
Figs.1 and 2. The method of calculation is described
elsewhere [11]. The straight lines are drawn with the pur-
pose of emphasizing regular trends in the discrete modes
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Fig. 4. a) Use of separate BSW- and CW-spectra for the
flow and glassy regimes and their superposition to model
the PS of Figs. 1 and 2. The points on the lines denote data
points, the lines are the result of the fit, and the other points
denote discrete relaxation modes g;, 4;, as shown in Fig. 3.
b) Loss modulus corresponding to Fig. 4a. c) Discrete BSW-
spectra of the model polymer of Fig.4a and b



Baumgaertel et al., Relaxation of polymers wtih linear flexible chains of uniform length

403

Table 2. BSW-spectra and CW-spectra of the polystyrene stndards PS-1. .. PS-6 and polybutadiene PBD. The CW-spec-

trum is the same for all polystyrene standards

Sample BSW-spectrum CW-spectrum
N, & Ay n a, N, & Ay n, a,

[Pa] [s] [-1] [-1 [Pa] (sl [-] -1
PS-1 20 3.35 10¢ 6.65 10~3 022 . 045 5 4.66 10° 4.02 10°° 0.84 4.3
PS-2 20 4.81 10* 1.03 10-2 0.22 0.45 5 4.66 10° 4.0210°° 0.84 4.3
PS-3 20 4.60 10* 1.29 10! 0.22 0.45 5 . 4.66 10° 4,02 1075 0.84 4.3
PS-4 20 4.08 10* 2.80 10° 0.22 0.45 5 4.66 10° 4.02 1075 0.84 4.3
PS-5 20 3.57 10¢ 8.07 10! 0.22 0.45 5 4.66 10° 4.02 10-° 0.84 4.3
PS-6 20 3.63 10* 5.70 10° 0.22 0.45 5 4.66 10° 4,02 1073 0.84 43
PBD 20 3.28 10° 9.32 10! 0.42 0.45 7 1.13 10° 5.56 1073 0.34 4.3

Separation into a flow and a glassy regime [12] was
implemented in a new program for determining
separate spectra for each regime. Also implemented
was the postulate that the modes sit on straight lines,
as realized in Fig. 3. The first guess of the parameters
g, A; in the non-linear iterative procedure was taken
from the shape of G” of PS-6. The discrete modes
follow the G” curve in great detail. Then the minimi-
zation procedure determined the final values for the
spectrum. The result, again, was an excellent fit of the
data, see Figs. 4 and 5. Deviations between the spectra
and the data are barely noticeable, even if the new ap-
proach does not reproduce any small waviness that
might be in the data.

Most interesting is the regularity in the calculated
relaxation modes g;, A;. The regular spacing and the
alignment make it clear that the calculated spectra are
power laws [11]. The spacing between the modes is ar-

—
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Fig. 5. Use of separate spectra for the flow and glassy
regimes and their superposition to model the polybutadiene
of Fig. 2. The points on the lines denote data points, the
lines are the result of the fit, and the other points denote
discrete relaxation modes g, A;, as shown in Fig. 3

bitrary for our purposes. The discrete spectra have the
form

—t

<(a li_ ! A1)>

flow regime
-t
@ ')

glassy regime

Ny )
G@)= Y giat® Vexp

i=1

Ny .
¢ T g0 exp

i=1

)

The new parameters are listed in Table 2. No physical
interpretation is given yet.

The result of the analysis is summarized by the
following observations: the flow regime and the
glassy regime can be separated into two additive com-
ponents. Each component follows a simple power
law.

3. Continuous relaxation spectrum

The spacing in the discrete spectra might be reduced
until a continuous spectrum is found (see Appendix).
The continuous spectrum H(A) is conventionally
defined by {2]

-

GW)=|

0

H——i’” e "*d) . 6)

The result of the above analysis is a continuous spec-
trum:

HQA) = HiA"R(1 — A/A)+Hyd " h(1=A/4))
™

flow regime glassy regime
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Table 3. Parameters of the continuous BSW-spectra for the
polystyrene standards PS-1...PS-6 and polybutadiene
PBD

Sample H A%, Amax ny
[Pa] sl [-]
PS-1 4,20 10* 6.65 1073 0.22
PS-2 6.02 10 1.03 10-2 0.22
PS-3 5.76 10* 1.29 10~! 0.22
PS-4 5.11 10 2.80 10° 0.22
PS-5 4.47 10* 8.07 10! 0.22
PS-6 4.55 10* 5.70 10° 0.22
PBD 4.11 10° 9.32 10! 0.42

which requires a cut-off at the longest relaxation time
of the flow regime, 4,, and at some glass time A, for
the glassy regime. This cut-off is introduced with a
Heaviside function A( ).

The values of the parameters (Table 3) are related
to the previously shown parameters of the discrete
spectrum (Table 2). The reproduction of the G’, G”
data is exactly the same as with the geometrical series,
Eq. (5).

The longest relaxation time varies with about the

3.4th power of the molecular weight (Fig. 6). The pro- -

duct H,A™ is a material-specific constant. The varia-
tions in the calculated H; value require further study
(see below). The slopes n; and n, are material-
specific constants, which are expected to depend
somehow on molecular properties, such as chain flex-
ibility, friction factor, or lateral chain dimension.

[s]

10 i T |311|||1] T T T T TTT7] T T T T ITTT
5 8 7
10 10 10 10

-1
M, [ gmol]

Fig. 6. Molecular-weight dependence of the longest relaxa-
tion time. The slope is about 3.45

4. Properties of the ideal spectrum for the flow
regime of LFM polymers

The parameters in the continuous spectrum are
related to commonly used experimental parameters.
In the following discussion, we will neglect the glassy
contribution and concentrate on the flow regime. This
ideal spectrum can be expressed in a more familiar
notation:

HG = nGYA ) R = A/ Aum) » @®

where G% is the equilibrium modulus and A, the
longest relaxation time. We will call this the BSW-
spectrum.

The relaxation modulus of the BSW-spectrum, as-
defined in Eq. (8), is an incomplete gamma function,
which has to be determined numerically. The cor-
responding dynamic moduli

A
max AdA
G'(@) =nGlw? | (A/A )" —=22 9
(@) =nGlo §,( ne) T ©
and
G"(w)—nGo'wAnfax(},/l R T
N A (wA) A

are shown in Fig. 7 for the cases of n= 0.2, 0.3, and
0.4. The plateau modulus is easily recovered for

lim G'(w)=GY% . (11)
w— e
2
10 —
O n,=02
10’4 ©n=03 } BSW-Spectrum
A n,= 04
w
& 10
w
.~ 10
<]
B -2
10
-3
10 r_;lllll"l —i IIIIIIII T l|l|ll|! T 1””“]' T ll'l'lTll’[ T IIIHIII 4l TTTT

10 10 10 10 10 10 10 10

o [rads'], A7 [s7]

Fig. 7. Storage modulus and loss modulus as described by
Eq.(8) with n=n, (BSW-spectrum), i.e. neglecting the
glass transition. The scaling parameter », is varied. A large
n, value lowers the curves in the entanglemented regime
while the terminal zone is little affected. The curves are nor-
malized by setting n,G%=1Pa and Ay, =1s. n, is the
slope of G"(w) for w~e
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Other properties of interest are the zero shear visco-
sity

No = lim G (w)-:'—'—"n

G Amax (12)
w0 1i4+n

and the recoverable compliance

1 1
= (1) . 13
¢ G% n%+2n (3

These are just a few examples in which the BSW-spec-
trum relates linear viscoelastic parameters, as defined
in the literature [2, 6].

An important relation is found for the intersect of
the low-frequency asymptotes of G’ and G”. These
asymptotes intersect at a frequency )

G(t)dt
1 n+2_£ ®
=7 S=2 : (14)
max ML TGt
0

This is an expression that occurs in many linear
viscoelastic-flow problems [5].

It is interesting to note that all of the conventionally
studied material functions disguise the power-law
character of the spectrum. Only by detailed analysis,
can we find the underlying pattern, which is presented
here.

The BSW-spectrum, having a positive power-law
exponent, obviously is unrelated to the Chambon-
Winter spectrum [13 — 15], which has a negative expo-
nent. Obviously, tan & varies over the entire frequency
range and no relation exists to liquid/solid transi-
tions.

5. Spectrum for the glass transition

The power-law spectrum with negative exponent
(CW-spectrum), H(A) = H,A ™" has been proposed
by Chambon and Winter [13 ~15] for describing lig-
uid/solid iransitions in crosslinking polymers, and its
properties have been studied extensively. It was sur-
prising to see that the same spectrum seems to reap-
pear in this very different context. From crosslinking
polymers, we know that the CW-spectrum of the criti-
cal gel is cut off by a characteristic /owest relaxation
time (high frequency limit). Something similar is ex-
pected for the transition behavior here.

The main phenomenological difference compared
with the critical gel is that the longest relaxation time

does not diverge to infinity. Instead, it is determined
by the flow regime, which cuts off the CW-spectrum
at its low frequency end. Molecular differences are
obvious, because the critical gel is highly branched
and infinitely broad in its molecular-weight distribu-
tion. This shows that the cemmon properties are not
based on molecular details. The.CW-spectrum seems
to be of broader importance, beyond the specific case
of gelation. Additional experiments are needed before
drawing conclusions about this very interesting obser-
vation. The main focus of this study is really on the
flow regime and not on the glassy behavior.

6. Comparison with Rouse and Doi-Edwards spec-
tra

The Rouse spectrum can be reconsidered in the new
context. The shape of the G’, G”-plot (for instance in
[2]) clearly shows, that the Rouse model describes the
terminal zone very well. However, it then continues
directly into the glassy region without allowing a
plateau modulus at intermediate frequencies. Such
behavior is typical for LFM polymers of low molecu-
lar weight M near the entanglement limit M,. For this
class of polymers, the Rouse model is ideal and it has
to be considered a remarkable success that the entire
range from flow into the glass regime can be repre-
sented in such a clear format.

This observation agrees well with the known suc-
cess of the Rouse model when it comes to predicting
the molecular-weight dependence of the zero shear
viscosity to be linear, 77, ~ M for M = M,.

Reproduction of the actual data (of PS-1, for in-
stance) might require a slight change of the Rouse
model for accommodating the specific slope of the
CW-spectrum. This slope is denoted as n, in Eq. (7).
The modified Rouse model has the form

N
G(t)=g ¥ exp(—ti'""/An,) , 15)

i=1

referring to the notation of Eq. (1). The meaning of
the additional parameter is not clear as of now.

In comparison, the de Gennes-Doi-Edwards spec-
trum [3, 4] applies to the flow regime (excluding the
transition to the glass). This already presents a signifi-
cant difference compared with the Rouse spectrum.
The further comparison with the BSW-spectrum is
very interesting (see Fig. 8). While the agreement is
about perfect in the terminal zone, principally dif-
ferent G’,G" curves are found in the rubbery zone,
which reflects the dynamics of the polymer chain. The



406 Rheologica Acta, Vol. 29, No. 5 (1990)
2 [}
10 10 =
1 51
10 4 BSW-Spectrum 10 5
— — 47
£ 10 g 10
fum e .
5 e o]
& 10 o 3 m e
-2 GDE—Spectrum 1.02_: / & G
10 E — Fit (BSW)
-3 10 T T T T I AL R o
10 AL LI U RELL B R AL SUR R AL BUAMERILY BN RRLL - l— l—-l ' I 0 I 1 l 2 l 3 4
= - 4 1 2 3 4 5 10 10 10 10 10 10 10 10

10 10 10 10 10 10 10 10
@ [rad s_l]

Fig. 8. Comparison of dynamic moduli of GDE-spectrum
[3, 4] and of BSW-spectrum [Eq. (8)]

differences even remained when we chose a value of
0.5 for the scaling parameter n, (for accommodating
the G” slope of the GDE-spectrum at high fre-
quency).

7. Application to bimodal distributions

The ideal behavior of LFM-polymers is not only of
basic physical importance, but it will help to solve ap-
plied problems. This is demonstrated with the relaxa-
tion behavior of a binary mixture of PS3 and PS5, as
measured by Schausberger et al. [9]. The dynamic
moduli of the blend are modeled by two superimpos-
ed BSW-spectra, for which the shift is determined by
means of Schausbergers mixing rule [14]. The con-
tribution to the glass transition is added in a separate
second step [12]. The agreement between measure-

ment and prediction is excellent (see Fig. 9 and Table

4). This suggests possible applications of the BSW-
spectrum in mixing rules for polydisperse polymers.

w [rad s’

Fig. 9. Dynamic modulus of 50% mixture of PS-3 and PS-5,
as measured by Schausberger et al. [9]. The relaxation
behavior is described by a superposition of two continuous
spectra, Eq. (7), by means of a mixing rule [14}

8. Discussion

The linear chains show scaling behavior both in the
flow regime and in the transition to the glass. The
simplicity of the result and the realistic prediction of
observable linear viscoelastic material functions of
LFM polymers suggest that the proposed relaxation
spectrum is of more general importance, beyond the
specific samples of this analysis.

In the analysis, little emphasis was given to the
glassy behavior, because not enough high-frequency
data are available to us (we have not yet looked for
such data). However, the onset of a power-law region
is suggested here (CW-spectrum). This is not com-
pletely unreasonable, because power law relaxation
G(t) = St™") is known to govern other types of li-
quid-solid transitions in polymers.

Subtraction of the glassy contribution from the
measured G',G” curves exposes the flow region

Table 4. BSW-spectrum and CW-spectrum of the blend of 50% PS-3 and 50% PS-5. Note that the CW-spectrum is identical
to the ones of the standards (Table 2). The BSW-spectra for the components PS-3 and PS-5 are shifted with the slope n,

and the spacing a, remains unchanged

Sample BSW-spectrum CW-spectrum
Ny 8, Ay,i ny i a, N, g Ay n, a,
[Pa] Is] [-1] [-] [Pa] [s] [-1 -1
PS-3 20 3.22 10* 3.58 10~! 0.218 0.45 5 4.66 10° 4,02 10-3 0.893 4.3
PS-5 20 8.64 10° 4.37 10! 0.218 0.45 0 0 0 0 0




Baumgaertel et al., Relaxation of polymers with linear flexible chains of uniform length

407

towards higher frequencies. The subtraction is
especially successful for the higher molecular-weight
samples, while it introduces more substantial error in
the spectra of samples with lower molecular weight.
This might be a reason for the large sample-to-sample
fluctuations of H, A 5L, (which should really be a con-
stant material parameter). The small, but finite width
of the molecular-weight distribution in the samples
cannot be blamed for the sample-to-sample variations
of H,, because it would not lower the plateau modu-
lus of a polymer.

Really surprising for us was the fact that such ideal
relaxation behavior was seen with all samples. Relaxa-
tion does not seem to be sensitive to small deviations
from perfect monodispersity. These deviation, how-
ever, might affect the value of n,.

The study shows a close relation between relaxation
spectra in discrete and continuous form. Either choice
leads to the same results. This gives a large amount of
flexibility in the data analysis, a fact which does not
seem to find enough appreciation in the published
literature.

9. Conclusions

We propose that monodisperse linear polymer
melts have a unique relaxation spectrum (BSW-spec-
trum) which is of the form H()=HA™
« h(A — Apa). Hy and ng are polymer specific and A,
is the longest relaxation time, which cuts off the spec-
trum at low frequencies. The glass transition at high
frequencies is described by a CW-spectrum, a power-
law spectrum of form the H(1) = H,A ™", For real
materials, both spectra were simply superimposed to
find a good description of the transition region.

The scaling exponent of the BSW-spectrum 7, was
found to be substantially different for the two
polymer species available to us. This implies that no
universal shape exists for G', G” of LFM polymers,
a result that should have a large effect on theory. It
seems that an important parameter is missing in a
theory of chain dynamics, which predicts material-
independent linear-viscoelastic functions of LFM
polymers. Ideally monodisperse samples are needed
to substantiate this finding.

The proposed spectrum comes strictly from ex-
perimental observation and is not biased by any
theoretical preference. This will make it a good mea-
sure for new theoretical developments. Knowledge of
the spectrum will also allow checking the many em-
pirical interrelations [2] that have been proposed for
linear viscoelastic functions.

We do not know a suitable physical model for ex-
plaining the observed relaxation spectrum. However,
the power-law form of the BSW-spectrum, Eq. (8),
suggests that there is a scaling relation between all
relaxation modes [3, 4]. This includes the short
modes, associated with the chain ends or segments,
and the longer modes of the connected part of the
chain. While we possibly might know the relaxation
of a linear flexible chain, we still have to find its mo-
tion mechanism. :

Appendix A

Interrelations between continuous and discrete
spectra :

The continuous relaxation spectrum

HA) =HAM"Mh(1 —A/Apay) A1)
can be expressed as an infinite series. From a quan-
titative point of view, both representations are iden-
tical. Exemplary, the interrelation shown for G"(w)
is

< WA
G"(w) = LH(A)mdlnA , (A2)
which transforms to
In Apmax nyni
nni @€
G“(CL)): L H1e 1 Am—ze—nimdlnl (A3)

for the BSW-spectrum [Eq. (A 1)]. Numerical integra-
tion of Eq. (A 3) leads to an infinite series (an analytic
solution is not known to us):

G"(w)= ¥ Hi(-Ina)ajiy'a'®*™
i=0

i=

w

X, (Ad)
14+ w?A2 0%

Parameter a is related to the step size in the numerical

integration above, so that

ARl og<a<i .

a=e (AS)
Alternatively, the discrete spectrum might be ex-
pressed as a sum of exponential decays, and Eq. (A2)

becomes [2]
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(DA.,'

G"(w)= E 81—222 .

(A6)

Comparison of Eq.(A6) with Eq.(A4) gives the
desired result. The relaxation modes of the discrete
spectrum g;, A; are scaled in the geometric series

&= 8oai"‘ y &= Hl( In a)}'max s (A7)
and
Ai=Agad' ,  Ag=Amax - (A8)

Scaling relations in Eqs. (A7) and (A8) are univer-
sal. They are equally found by solving the integral
equations for G'(w) or G(¢).

The leading relaxation strength of the discrete spec-
trum depends on the spacing of the relaxation modes.
However, the longest relaxation time is invariant and
is identical to the cut-off relaxation time of the con-
tinuous spectrum. A change in the spacing, a, does
not alter the shape of the G” curve; however, its
waviness increases with a wider spacing.
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