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Abstract The linear viscoelastic
material functions of linear flexible
polymers of uniform length are cal-
culated from the BSW spectrum
{Baumgaertel et al., 1990, 1992),

ior which otherwise is not available
in such comprehensive form. Ex-
perimental check of these predic-
tions is still needed in most cases.
Also, some insight into the predic-
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and explicit analytic expressions are
presented for several of the most
common material functions for tran-
sient and dynamic experiments.
However, numerical calculations are
presented whenever needed. The
BSW spectrum was determined
from experimental G',G” data of
two sets of molten polymers of nar-
row molecular weight distribution,
polystyrene and polybutadiene. The
purpose of the mapping is to show
a wide range of viscoelastic behav-

tions for the non-linear (including
the non-equilibrium) viscoelastic be-
havior is achieved by studying two
particular experiments: the start-up
of uniaxial extension at constant
rate and the start-up of shear flow-at
constant rate.

Key words Relaxation time
spectrum — monodisperse polymers
— hypergeometric function —
incomplete gamma function — linear
viscoelasticity — polymer dynamics

Introduction and background

John D. Ferry has pioneered the study of relations be-
tween molecular structure and linear viscoelastic proper-
ties. He has realized that a unique relaxation pattern
governs (nearly) monodisperse polymers of linear flex-
ible architecture (Ferry, 1980). One might assume that
this relaxation pattern is universal since experiments on
a wide range of polymers (Onogi et al.,, 1970; Graess-
ley, 1974; Marin et al., 1977; Schausberger et al., 1985;
Baumgaertel et al., 1992) showed that it is independent
of the particular molecular structure of the polymer
chain if only intermediate and long time scales are con-
sidered, i.e., for the entanglement and flow behavior.
These observations are assumed to be the consequence
of a universal relaxation time spectrum that depends
only on a small number of material-specific parameters.

Many authors have tried to derive this universal re-
laxation time spectrum from first principles. The theo-
retical models of Rouse (1953), de Gennes (1979), Dot
and Edwards (1986) and Bird et al. (1987) are able to
predict the macroscopic behavior from molecular pa-
rameters and dynamics but, although they give much
insight into the molecular origins of the macroscopic
behavior, they fail to give good quantitative agreement
with experimental data. More recent theories of des
Cloizeaux (1990) and Schweizer (1995) seem to be
more quantitative, but their viscoelastic predictions have
not been explored enough to come to a detailed evalua-
tion.

Experimentalists have also tried to find the func-
tional form of this “universal” relaxation time spectrum.
Among these attempts are the box-wedge shape for the
spectrum proposed by Tobolsky (1960), which does not
agree with experimental observations (entanglement
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“plateau” for G”), and the quite successful empirical M\?
methods of approximating the relaxation time spectrum Amax = 4¢ (Xf) (1b)
[4

described by Ferry (1980) to mention just a few:

While the terminal flow region has been described
successfully with a stretched exponential function
(Knoff et al., 1971), many of such modes are needed to
include the entanglement regime. The number of param-
eters is large as is typical for discrete fitting functions
and no physical meaning can be assigned to individual
modes since they depend on the method of discretiza-
tion.

Based on a detailed analysis of dynamic mechanical
data of linear model polymers, Baumgaertel et al.
(1990, 1992) proposed a specific form for the relaxation
time spectrum (called the BSW spectrum from here on).
The validity of the BSW spectrum was studied exten-
sively elsewhere (Baumgaertel et al., 1990, 1992; Jack-
son et al. 1994) so we restrict ourselves to present the
form of the spectrum and describe the parameters in-
volved. The spectrum has the following form

A\ J) m
H(/'[) _ m%[(z) +<m> J,for/lg/lmax

0 ,for A > Amax
(1a)

where GY is the plateau modulus, m and n are the
slopes of the spectrum in the entanglement and high-
frequency glass transition zones respectively, Anax is the
longest relaxation time and A, is the crossover time to
the glass transition. The molecular weight dependence
of the spectrum is implicit in the parameter Ama de-
fined as follows:

Fig.1 BSW relaxation spectrum 1E+02 T

H(4) as a function of relaxation
time for three polystyrene and
three polybutadiene samples: PS-
1 (34000 g/mol), PS-2

(292000 g/mol), PS-3

(2540000 g/mol), PBD-1

(18100 g/mol), PBD-2 (37900 g/
mol) and PBD-3 (201000 g/
mol). Parameters are given in Ta-
ble 1

1EH1 +

1E+00 1+

1E-01 ¢+

Relaxation Spectrum / Plateau Modulus

Jackson et al. (1994) obtained numerical values for all
these parameters for two different polymers: polysty-
rene and polybutadiene. These values, shown in Ta-
ble 1, will be used in the present work.

Figure 1 shows the spectrum for three different poly-
styrene samples and three different polybutadiene sam-
ples. It can be observed that, for each polymer, the
curves fall on a unique curve at short relaxation times;
this agrees with the fact that in this region only short-
ranged correlated motions involving a few mers are ac-
tive. For long relaxation times, the spectrum vanishes,
which expesses itself in a cutoff at Amax. The relaxation
times are normalized with the polymer-specific cross-
over time, /..

It is the objective of this study to explore the pat-
terns of linear viscoelasticity of polymers with linear
flexible molecules of uniform length. The classical the-
ory of linear viscoelasticity (Ferry, 1980) interrelates the
material functions. Only one material function needs to

Table 1 BSW parameters of polybutadiene at 28 °C and polystyrene
at 180°C

Parameter Polystyrene Polybutadiene
GY, [Pa] 228000 1650000

m 0.23 0.23

n 0.67 0.73

Ac (5) 2x107™ 4.04x10”
M, [g/mol] 16600 2714

z 343 3.52

1E-02
1E-03

1E+01 IE+03 1E+05 LE+07

Relaxation Time/Crossover Time

1E-01
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“be known, which in our case is the BSW spectrum (as
a nearly perfect reproduction of G', G” data). The use
of the BSW spectrum is advantageous because of two
reasons: first, it provides analytical expressions for the
material functions which are quantitative (as G, G”
data would yield) and, second, it reduces the descrip-
tion of the linear viscoelastic behavior of any polymer
melt with very narrow molecular weight distribution to
the determination of only five material-specific parame-
ters. The resulting pattern is expected to be universally
valid in the linear region. Non-linear predictions with
the BWS spectrum are not universal since they involve
specific choices of constitutive equations. This will be
explored in two examples in order to demonstrate de-
viations from linearity. The entire study focuses on the
flow and entanglement regions of molten polymers. The
glass behavior at short times is not included in this
study.

BSW predictions

The universality of the relaxation time spectrum ex-
presses itself in a universal set of linear viscoelastic ma-
terial functions which, in their universality, have hardly
been explored. The most important ones of these mate-
rial functions will be mapped out by introducing the
BSW spectrum (Eq. (1)) into Boltzmann’s classical
equation of linear viscoelasticity for the stress

ax

t

(1) = / di'2D(¢) / fll—lH(A)e‘(":IQ )
—00 0

2D(¢) is the rate of strain tensor.

The BSW retardation time spectrum

The relaxation time spectrum is not the only type of
spectrum that is capable of describing the linear visco-
elastic behavior (Ferry, 1980). An alterative is the re-
tardation time spectrum, L(4), which, in particular, is
more convenient for calculating the creep compliance
as will be shown further below. For fluids, the two
types of spectra are related by the following expression
(Gross, 1953)

H(A)L(A)={[};,%l—) 7 dln(u)gl_(ul)]z_‘.nz}“l

- 3)

The integral in the denominator cannot be calculated
in general, but the particular case of the BSW spectrum
has an analytical solution. The primitive is expressed in

terms of generalized hypergeometric functions (Gradsh-
teyn, 1980). For example, if only the entanglement part
of the spectrum, H, = mG%(4/Amax)™, is used (the cal-
culation for the glassy part is similar), the primitive is
the following

T Ho(u) 2\"
-1 din(u) =m Nn{ctg (mm) <imax)
1 A
—-;[;F(l,—m,l —m,_—lmax)} (4)

where F is the hypergeometric function (see Appendix
A). Using this result and the similar one obtained for
the glassy part of the spectrum, the analytic expression
of the BSW retardation time spectrum is the following.

- {[(&) [ronso2)
(i) ()
Arlmom )
ITTI6) ]

(5a)

In the case of retardation times shorter than the cross-
over time (A < A.), this spectrum can be approximated

" by the following expression.

L(A) =

e ) (1) 50

Figure 2 shows the BSW retardation time spectra for
the same polystyrene and polybutadiene samples stud-
ied before. Again, for each polymer, the curves fall on
a unique curve at short retardation times as in the case
of the relaxation spectra. The values of the slope, n, for
polystyrene and polybutadiene are 0.679 and 0.74, re-
spectively. Finally, when the retardation time ap-
proaches Amax, the hypergeometric functions go to infin-
ity, thus the BSW retardation spectrum approaches zero
very quickly. The maximum retardation time is equal to
the longest relaxation time, Apax. It is important to men-
tion the very good qualitative agreement between our
prediction and the experimental results obtained for
nearly monodisperse poly(cis-isoprene) by Nemoto and
coworkers (Nemoto et al., 1972).

—y
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Fig.2 BSW retardation spec- 1E-02

1E+00 1E+02 1E+06 1E+08

trum as a function of retardation 1E+00

time for three polystyrene and
three polybutadiene samples: PS-
1 (34000 g/mol), PS-2

(292000 g/mol), PS-3

(2540000 g/mol), PBD-1

(18100 g/mol), PBD-2 (37900 g/
mol) and PBD-3 (201000 g/mol)

Retardation Spectrum * Plateau Modulus

Fig.3 Relaxation modulus as a 1E+02 T

function of time for six polysty-
rene samples: PS-1 (34000 g/
mol), PS-2 (65000 g/mol), PS-3
(125000 g/mol), PS4

(292000 g/mol), PS-5

(757000 g/mol) and PS-6
(2540000 g/mol)

£

z

Relaxation Modulus / Plateau Modulus
m
g

Retardation Time / Crossover Time

1E-02
1E-03

The relaxation modulus

One of the most frequently used material functions is
the relaxation modulus which gives a measure of the
stiffness of the material. The relation between this quan-
tity and the relaxation time spectrum is given by the
following equation:

T di

Gy = [ SHWe™

0

It is of interest to study the relaxation modulus pre-
dicted by the BSW spectrum. H(A) is given by Eq. (1)

(6)

1E+03 1E+06

Time / Crossover Time

1E+00

and the upper limit of the integral is Amax. The resulting
relaxation modulus is a linear superposition of two in-
complete gamma functions (see Appendix B).

o0-ne (L) 1)
w(E)iot) o

Figure 3 shows this relaxation modulus for six poly-
styrene samples. The glass transition, entanglement and
flow regions can be seen clearly. Also, a unique curve,
independent of molecular weight, can be seen at short
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Fig. 4 Storage modulus as a
function of frequency for six
polystyrene samples: PS-1
(34000 g/mol), PS-2 (65000 g/
mol), PS-3 (125000 g/mol), PS-4 B+ 1
(292000 g/mol), PS-5 (757000 g/
mol) and PS-6 (2540000 g/mol)

E

Storage Modulus / Plateau Modulus

1E-3
1E9

Fig. 5 Loss modulus as a func- 1E+02 T

tion of frequency for six polysty-
rene samples: PS-1 (34000 g/
mol), PS-2 (65000 g/mol), PS-3
(125000 g/mot), PS4

(292000 g/mol), PS-5

(757000 g/mol) and PS-6
(2540000 g/mol)

Loss Modulus / Plateau Modulus
b

1E-6 1E-3 1E+0 1E+3
Frequency * Crossover Time

times. The length of the rubbery plateau increases as
the molecular weight increases (increasing Amax/Ac)-
Similar results were obtained for seven polybutadiene
samples.

Dynamic mechanical behavior

The dynamic mechanical modulus is one of the most sen-
sitive and informative material functions for polymeric
systems. Relaxation processes appear as peaks in the loss
modulus allowing us to determine the temperature at

1E-6 IE3 1E+0 1E+3
Frequency * Crossover Time

which a particular relaxation mode is activated and, there-
fore, giving a quantitative measure of the activation en-
ergy for particular modes such as the glass transition (al-
pha relaxation), the beta relaxation, and others. As a con-
sequence of this, it is of interest to see if the dynamic
quantities predicted by the BSW spectrum reproduce
the experimental data. Although this calculation has
been done previously numerically (Baumgaertel et al.,
1990, 1992), the purpose is to get an analytical expres-
sion for the storage and loss moduli. It is clear that only
the dynamic modulus or the dynamic compliance is re-
quired because of their interrelation (Ferry, 1980):

~t
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Fig. 6 Tan () as a function of
frequency for six polystyrene
samples: PS-1 (34000 g/mol),
PS-2 (65000 g/mol), PS-3
(125000 g/mol), PS4

(292000 g/mol), PS-5

(757000 g/mol) and PS-6
(2540000 g/mol)

Fig. 7 Storage compliance as a
function of frequency for six
polystyrene samples: PS-1
(34000 g/mol), PS-2 (65000 g/
mol), PS-3 (125000 g/mol), PS-4
(292000 g/mol), PS-5 (757000 g/
mol) and PS-6 (2540000 g/mol)

G'J =1

The storage modulus and the loss modulus depend

5-1
1E+6 4
PS-2
1EH4 4
) PS4
E 1E+2 ¢+ P55
P86
1E+0 4 ~
1E-2 + + - + + {
1E-8 1E§ 1E-4 1E2 1E+0 1E+2
Frequency *Crossover Time
1E+1 +
'§ PS4 PS3
=
= P81
Q 1E+0
8 1
8
o
&
1E-1 + + + + 1
1E9 1E-7 1E-S 1E3 1E-] 1E+1
Frequency * Crossover Time

on the relaxation spectrum by (Ferry, 1980)

, d/l (wA)?
G (w) = J H( )l+ (@)’
(o) = %H(A)%.

0

(8) In the particular case of the BSW spectrum, these in-
tegrals can be solved analytically.

@) =G whna{ (25 )

'lmax

1 n n
_nF(l,l—i;z"‘i;“(w'lmaxy)

o) +%-F(1,1f2 2+ —(@WAmax) )}

(10)

N
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Fig.8 Loss compliance as a IE+8 T

function of frequency for six
polystyrene samples: PS-1
(34000 g/mol), PS-2 (65000 g/
mol), PS-3 (125000 g/mol), PS4
(292000 g/mol), PS-5

(757000 g/mol) and

PS-6 /2540000 g/mol)

o & &
5. i S
. :
+ +

Loss Compliance * Plateau Modulus

2

1E-2

Cad

1E-9

max l—n

l—-n3—-n
F<1,_2“‘§ 3 ;"(w/lmax)2>

P (L o)) |
(11

where F is the generalized hypergeometric function.

Figures 4 to 8 show the different dynamic quantities
for the six polystyrene samples. At high frequencies all
these curves merge into a unique curve, independent of
molecular weight. The mapping of Figs. 4 and 5 onto
the experimental data is within experimental error as
was shown by Baumgaertel et al. (1990, 1992) and
Jackson et al. (1994). Similar results were obtained for
seven polybutadiene samples.

o) el (1)

The creep compliance

The creep compliance has been calculated mostly in the
following three different ways. First, if the storage or
loss compliance is known, a simple Fourier Transform
gives us the desired result. In our case, the expression
for the dynamic compliance is so complicated that the
integration cannot be done analytically. The second
approach is to calculate the creep compliance from the
retardation spectrum. Again, the complicated expression
cannot be integrated analytically. The third approach is

IE-6 1E3 1E+0
Frequency * Crossover Time

to calculate the Laplace transform of the creep compli-
ance and then try to invert it. In this case, although the
Laplace transform can be obtained analytically, the in-
verse is not available. Therefore, the creep compliance
was calculated numerically using the second approach.

[ ¢}
4

0 =/ f‘%L(z)(l _e) +”—’0 (12)
0

The integral was discretized with the trapezoids
method. In support of these calculations very good nu-
merical agreement between the recoverable compliance
calculated numerically and analytically was observed.

The results for the six polystyrene samples are
shown in Fig. 9. The plot shows a unique behavior, in-
dependent of molecular weight, at short times and a
plateau region that increases with increasing molecular
weight. The predicted behavior compares well with pub-
lished experimental observations as reported by Ferry
(1980). Similar patterns were observed with seven poly-
butadiene samples.

Steady shear properties of the BSW spectrum

Among the most common viscoelastic properties in
steady shear experiments are: the zero-shear viscosity
7o» the first normal stress function y, and the recover-
able compliance J°. The BSW spectrum allows analytic
expressions to be calculated for all these material func-
tions:
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Fig.9 Creep compliance as a 1E+8 + ps-1
function of time for six polysty-
rene samples: PS-1 (34000 g/ ps2
mot), PS-2 (65000 g/mol), PS-3
(125000 g/mol), PS-4 ps-
(292000 g/mol), PS-5 2
(757000 g/mol) and PS-6 %
(2 540000 g/mol) 2[54.5 + 2
g PS-§
8
2
a
51E+2 T Fes
[~9
]
|6
1E1 - + '
1E-1 1E+2 1E+S 1E+8
Time / Crossover Time
Table 2 Steady sh rti
able Y Sheal properties  gample Mw [g/mol] Armax (8) 7o [Pas] v, [Pas? JO [1/Pa]
Polystyrene 34000 2.34x107 171.3 0.34 5.80x107°
Polystyrene 65000 2.16x1072 1069 23.53 1.03x107°
Polystyrene 125000 2.03x107! 8986 1978 1.22x1078
Polystyrene 292000 3.73x10° 1.60x10° 6.58x10° 1.28x107°
Polystyrene 757000 9.80x10" 4.18x10° 4.52x10° 1.29x1073
Polystyrene 2540000 6.23x10° 2.66x10° 1.83x10'2  1.29x107°
Polybutadiene 18100 3.21x107™ 1.03x10? 3.56x1072  1.69x107°
Polybutadiene 20700 5.16x107* 1.63x10? 9.13x102  1.72x107¢
Polybutadiene 37900 4.33x107 1.34x10° 6.41x10° 1.77x107°
Polybutadiene 44100 7.39x1073 2.29x10° 1.86x10! 1.78x10°8
Polybutadiene 70200 3.79x1072 1.17x10% 4.90%10? 1.78x1076
Polybutadiene 97000 1.18x107! 3.66x10° 4.78x10° 1.79x107°
Polybutadiene 201000 1.54x10° 4.75x10° 8.06x10° 1.79x107°
Amax where M is the molecular weight of the sample and M,
_ H(3)dA = m_ 04 is the crossover molecular weight. Table 2 shows the
o = T l4m NTMH value of these viscoelastic quantities for each of the

0

1+1+m_A—l£nZ
l-n\M

lmax
_ _ 2m 2
w,_:z/ 1H(A)d1—2+mG§’Vl
0

1+2+m .Aﬁ nz
2—-n\M

max

(13)

(14)

(15)

samples. The contribution of the glass transition is in-
cluded here (expressions in wavy brackets) but it can
be considered negligible for high molecular weights,
M>M.. :

The start-up of uniaxial extension at constant rate

The BSW spectrum might also be useful for predicting
non-linear behavior during the start-up of uniaxial ex-
tension at constant rate. This experiment has been ana-
lyzed previously by Chang et al. (1972) to explain
Meissner’s experimental observations (Meissner, 1971)
but using a different relaxation spectrum (for broadly
distributed polymers).
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Fig. 10 Elongational viscosity, 1E407 1

(t11 — t22)/#0, as a function of
time for a polystyrene sample
with a molecular weight of
65000 g/mol. The different shear
rates are shown

1E+06 1

]
F
2

&
2

Elongational Viscosity [Pa s]

IESto 108"
1E+03 A
1E+02 1
1E+01 +
1E+00 + + + y
1E-05 1E-04 1E-03 1E-01 1E+00 1E+01

Fig. 11 Elongational viscosity, BT

(T“ et ‘tzz)/éo, as a function of
time for a polystyrene sample 1E+08 +
with a molecular weight of

757000 g/mol. The different

shear rates are shown 1E+07 +

Elongational Viscosity [Pa s]

1E+02 +

1E-02
Time {s]

1E+01
1E-5

To study the predictions of the BSW specttum, we
chose the single integral constitutive equation of Lodge
(1964).

!
(1) = / di'my(20)C (55 1) (16)
—00
Among all the possible strain tensors available, we
have chosen Finger’s strain tensor C~'(¢; ¢). The mem-

ory function is expressed in terms of the relaxation
spectrum by

i : 4 '
t y t +

1E4 1E3 1E2 161 1E+0 1E+1 1E+#2
Time [s]

;-mxx
, dGg(t -1t H(A) _u
e = M A sl

We consider a polymer which is fully equilibrated
until, at time r=0, it gets stretched at constant rate &.
The relative length change of the sample is prescribed
as

) _ ! —00< <0
—L = =< 5 18
10y~ °¢ eol=f)  0<i <t (18)

-
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Thus, using Finger’s strain tensor and the previous ex-
pression for the memory function, the stress response
can be written in component form.

lmax
H(A) (1 = 2&phe~(1-203);
m——rzz:/ di i){ 10_2&‘0,1

(19)

1 + oAe—(1+aod)
- 1 + &

In our case, the relaxation time spectrum is pre-
scribed for monodisperse polymers (Eq. (1)). Figures 10
and 11 show the elongational viscosity, (711 — 722)/éo,
for two polystyrene samples with molecular weights
65000 and 757000 g/mol, respectively. The qualitative
behavior is the one observed previously by Chang. Fig-
ure 10 shows that the viscosity dlverges to infinity if
the stretching rate is larger than 10s™ ! and the diver-
gence begins at times close to the inverse of the stretch-
ing rate. If the stretching rate is below or equal to 1057,
the viscosity reaches a limiting value. In Fig. 11 a similar
behavior can be observed. Agam the viscosity dlverges
to infinity if the stretching rate is larger than 0.001 s~
and the divergence begins at times approximately equal
to the inverse of the stretching rate. Also if the stretch-
ing rate is below or equal to 0.001s™!, the viscosity
reaches a limiting value at long times.

It is interesting to observe that the value of the elon-
gational viscosity at short times is independent of mo-
lecular weight. Figures 10 and 11 show this result very
clearly. This is a direct consequence of the model and
will be discussed later.

Finally, the plots show some curvature at short
times. This is not an inaccuracy of the calculation
which is accurate up to the fifth significant digit. There-
fore, it should be taken as a prediction of the model.

The start-up of shear flow at constant rate —
Viscoelasticity of the non-equilibrium state

A sample is held at rest until it is fully equilibrated.
Then, at time ¢ = 0, shear flow is imposed at constant
rate . The shear stress response is calculated using the
single integral constitutive equation of Lodge (1964)
but, since the viscoelasticity of a non-equilibrium state
is to be described, a damping function must be included
in the calculations (Wagner, 1976). As before, we have
chosen Finger’s strain tensor as the strain measure and
the memory function has been expressed in terms of the
relaxation spectrum (Eq. (17)). Among all the available
damping functions (Wagner, 1976, 1978; Osaki, 1976;
Laun, 1978; Papanastasiou et al., 1983; Soskey et al.,
1984), we have chosen Wagner’s expression for this
function because it requires only one parameter and its

functional form is easy to deal with. The explicit form
of the damping function

h(t; (') = e~ (20)
depends on the shear strain
t
i) = [ arie (21)
tl

where the parameter “n;” is not known for our samples.
Generally, the numerical value of this parameter is be-
tween 0.2 and 0.3 so we take a value of 0.25 for our
analysis. The arbitrary selection of this parameter invali-
dates the quantitative predictions of our calculation, but
allows us to study the predictions of the BSW spectrum
qualitatively. In particular, we want to investigate how
the BSW spectrum, together with h, predict shear thin-
ning and stress overshoot.

The shear stress as described with the above equa-
tion

!
=71y = / d’'me(t — O)h(t; £ )y(1; 1)

(22)
needs to be evaluated for the strain history
-0 <t <0
y(tt)—{ ot — 1) 0<t<t (23)
After substitution of Egs. (17, 20, 21, 23) into

Eq. (22), the shear stress can be written in the following
form

Amax

12(t, 7o) =70 / diH () [{(_131%%
0

1 } _t( 4y ).)+ 1
——— e e rrre— e —— .
(1 + mypd)’ (1 + mijph)’?
(24)

The integral in Eq. (24), together with Eq. (1) for
H(A), needs to be evaluated numerically. Figures 12
and 13 show the resulting shear viscosity for two poly-
styrene samples with molecular weights of 65000 and
757000 g/mol, respectively. The stress overshoot can be
seén in both plots clearly. In the first case, molecular
weight of 65000 g/mol, the maximum relaxation time is
0.0216 s, while in the second case, molecular weight of
757000 g/mol, it is 98 s. In both cases, the stress over-
shoot is observed for shear rates larger than 1/4m,x and
the stress maxima occur at shear strain, j¢, values
which are equal to the inverse of the damping parame-
ter, n;. It is of importance to mention the fact that the
shear viscosity at very short times is independent of
molecular weight which is shown in both figures. This
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Fig. 12 Shear viscosity, 721/, 1E+04 T
as a function of time for a poly-
styrene sample with a molecular Shear Rate [s™)
weight of 65000 g/mol. The dif-
ferent shear rates are shown
1E+03 1 1ES10 10
100
i
[
&
z 1000
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Fig. 13 Shear viscosity, 731/, 1B+07 Shear Rate [s']
as a function of time for a poly- 1E5 10 1E-2
styrene sample with a molecular
weight of 757000 g/mol. The 1E+06 + 04
different shear rates are shown
1E+05 ’
-
o
B
S 1E+04 1 0
> ess }
g 100
@
102 1 1,000
10.000
1E+01 4 100,000
1E+00 + + + + + + + 4
1E-08 1E-04 1E-03 1E-02 1E01  1E+00  1E+01  1E+#02  1E+03
Time [s)

result is a direct consequence of the model and will be
discussed later. The curves not showing stress over-
shoot are a consequence of the BSW spectrum only
since shear thinning is still negligible. At higher rates,
shear thinning sets in as predicted from the damping
function, A(t; ).

To get further insight, the shear viscosity as a func-
tion of the shear rate is shown in Figs. 14 and 15 for
two polystyrene samples with a molecular weight of
65000 and 757000 g/mol, respectively. A surprising re-
sult of the calculations is that in the shear thinning re-
gion, the values of the viscosity predicted for long

times fall below the values predicted for shorter times if
the shear rate is the same. This is not an inaccuracy of
the calculation, which is accurate up to the fifth signifi-
cant digit; therefore, it should be taken as a prediction
of the model together with Wagner’s damping function.

For the sake of completeness, we present here the
predicted steady shear viscosity, #(j), and first normal‘
stress difference in steady shear, (71 — 722)/ (9o)%

}vmax

3,2—'=f di
Yo
0

H(A)
(1 + m3)°

n(y) (25)
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Fig. 14 Shear viscosity, 72/, 1E:04 1
as a function of shear rate for a
polystyrene sample with a mo-
lecular weight of 65000 g/mol.
The different times are shown Time [s)
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Fig. 15 Shear viscosity, 721/, 16407 1 Time s}
as a function of shear rate for a 100
polystyrene sample with a molec-
ular weight of 757000 g/mol. 10
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mom_ s [ o H(A)A (26)
(}-,0)2 - (1 +miy )2 The empirical BSW spectrum is the most simple known
0 ° form of a function which, together with Eq. (9), is able

Both integrals are easy to calculate and can be evalu-
ated in terms of hypergeometric functions, but we will
not pursue that calculation here.

to accurately describe G',G” data of polymers with lin-
ear flexible molecules of uniform molecular weight. A
more detailed spectrum could only be proposed from
theory. It could not be extracted from the experimental
data due to the Morozov (1984) Discrepancy Principle
which expresses the fact that a physical model for de-
scribing a data set cannot be of higher accuracy than
the noise in the data.
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With the exception of dynamic mechanical experi-
ments, yielding G’, G” data, linear polymers of uniform
length have been studied very little experimentally. The
BSW spectrum gives us the opportunity to predict rheo-
logical material functions for a wide range of kine-
matics. We attempted to cover all the important ones in
this paper. The calculations give a self-consistent picture.

The first important result is the retardation spectrum.
This spectrum has been calculated analytically, thus no
numerical integration is required for its evaluation. As
expected, all the spectra fall on the same curve (slope
n) for short retardation times which correspond to the
glass-transition modes; these modes are short-ranged,
thus independent of molecular weight. It must be men-
tioned that the slope of all the spectra in this region is
the inverse of the slope of the relaxation spectrum. This
can be proven mathematically and the result was given
in Eq. (5b). It is a property of the BSW spectrum. On
the other hand, long retardation times show a strong de-
pendence on molecular weight as expected because they
involve long-ranged molecular motions. Also, in the
case when the retardation time is close to the maximum
retardation time, the spectra drop to zero; this is be-
cause of the cut-off in the BSW relaxation spectrum.
Therefore, we do not expect that these spectra can be
evaluated accurately near the cut-off point. Finally, the
predicted retardation spectra look very similar to the ex-
perimental ones published by Nemoto and coworkers
(1972).

The next result is the analytical prediction of the re-
laxation modulus. Again, at short times all the curves
superpose because only those modes with short relaxa-
tion times (glass-transition modes) can relax; these
modes are independent of molecular weight. As soon as
the long-ranged motions are activated, the molecular
weight effect can be seen. As observed experimentally,
the width of the rubbery plateau increases with increas-
ing molecular weight, the plateau modulus is indepen-
dent of molecular weight and the terminal zone begins
when the time is of the same order of magnitude as the
longest relaxation time.

In the case of the dynamic mechanical behavior, the
prediction of the storage and loss moduli agrees with
the results obtained by Jackson et al. (1994). Also, the
qualitative behavior of the dynamic quantities agrees
with the one observed experimentally. In the case of
tan (0) = G”/G’, the behavior is as expected. For ex-
ample, an increase in molecular weight should decrease
the fluidity of the system making it more elastic, thus,
decreasing the phase lag between the excitation and the
response of the system. Therefore, tan(d) should
approach zero as observed. Also, at high frequencies,
the system cannot dissipate energy efficiently, therefore,
it becomes more “glass-like” and its phase lag ap-
proaches a very small value independent of molecular
weight.

Sometimes the crossover of G' and G” or the maxi-
mum of G” has been related to the plateau modulus.
One of these relations is the experimental observation
of Raju et al. (1981) that states

Gy
GII

max

= 3.56

We decided to check this relation for two samples,
polystyrene and polybutadiene. The results obtained
show that the ratio is equal to 4.8 for all the molecular
weights of both samples. This is in reasonable agree-
ment with Raju’s measurements.

The behavior predicted for the creep compliance is
similar to the one observed experimentally where the
plateau compliance is independent of molecular weight,
but the width of the plateau increases with molecular
weight.

As stated before, all the transient and dynamic mate-
rial functions fall on a unique curve in the limits of
short times and high frequencies, respectively. This is a
consequence of the BSW spectrum and can be under-
stood in the following way. At short times (high fre-
quencies) the behavior of the material is described by
the glass-transition part of the spectrum because only
short-ranged correlated motions involving a few mers
are active. Therefore, the value of the transient (dy-
namic) material functions should be independent of the
molecular weight. This is captured by the BSW spec-
trum because the molecular weight dependence appears
in the A« parameter which is present in the entangle-
ment part of the spectrum.

The predictions in the non-linear viscoelastic regime
agree qualitatively with what is known from experimen-
tal observations. In the case of the start-up of uniaxial
extension at constant rate, the results agree with the pre-
vious results of Chang et al. (1972). In the case of the
start-up of shear flow at constant rate, the BSW spec-
trum together with Wagner’s damping function are able
to predict the stress overshoot observed experimentally,
the conditions when this overshoot should be observed
and the time at which it should occur. Also, the model
predicts the shear thinning behavior. In both experi-
ments, the viscosity has a value independent of molecu-
lar weight at short times as explained previously.

Conclusions

The universality of the linear viscoelastic behavior of
long linear flexible monodisperse polymers can be stud-
ied with the example of two polymer species, polysty-
rene and polybutadiene in our case. The BSW spectrum
allows self-consistent predictions for the flow regime,
the elastic or entanglement regime, and the glass transi-
tion. While agreement with experimental data is known
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to be excellent for dynamic mechanical material func-
tions, -more data are needed for the other flow geo-
metrics and transients.

The power law in the entanglement region seems to
be a clear signature of the linear flexible chains of uni-
form length. Not so clear from the experiments is the
crossover to the power law of the glass transition (we
decided on a linear superposition) and the cut-off at the
longest relaxation time. The data do not allow us to dis-
tinguish between an abrupt cut-off or a continuous but
rapid drop. Our choice of an abrupt cut-off did not
cause any inconsistency in the predlctlons from the
BSW spectrum and we decided to stay with it.

Analytical expressions were found for many of the
material functions which makes it easier to calculate
them and compare with experiments. It also reduces the
description of the material functions to a unique set of
material parameters consisting of the longest relaxation
time, Amax, the plateau modulus, G, the slopes of the
spectrum in the entanglement region (m) and in the
glass transition region (—n), and the crossover time, A.
The crossover time provides a very useful reference
time; it is material specific and it encompasses the de-
pendence of relaxation on temperature and pressure
while being independent of molecular weight.

In the non-linear viscoelastic regime, the BSW spec-
trum has been able to capture some major effects like
shear thinning, stress overshoot and the divergence of
the elongational viscosity in an uniaxial extension ex-
periment.

The results obtained show the necessity of more ex-
periments in order to test the quantitative predictions of
this work. In the future, the spectrum should be ex-
tended to polydisperse melts and solutions, branched
polymers, and miscible blends.
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Appendix A

Hypergeometric functions arise as the solutions for the
hypergeometric differential equation

+{y—(a+p+1)z}

— afy(z) = (A1)

The solution to this equation can be written down in
the form of a Taylor expansion if the argument, z, is in
the interval (-1,1) and the coefficients satisfy that
y—(a+pB) > —1. The first terms of the series are
shown in Eq. (A2).

2(1-2) ;(2

dy(z)
dz

e ) — a(a+ DB+ »
F(aaﬂ1yvz)_l 1 .y z+ 1 2 )’(}’+1)

La@+1)G+2)BE+DE+2) 5

1239+ D)y +2)

(A2)

The solution can be expressed in an integral form,

Eq.(A3). It was this expression that appeared in our cal-
culations and led to the appearance of this type of func-

tions in our analysis.
1
F@bind) =g 0/ Sy
(A3)

(1 — uz)"du

Finally, many times it was necessary to evaluate this
function for arguments larger than unity for which the se-
ries does not converge. For this case, we have used the
analytic continuation of the function shown in Eq. (A4).

. _F(y)r(ﬂ_a) —1)%¢
F(asﬂ7)’sz) —I"(,B)F(y—a)( 1)

F(a,a+l—y;a+1—ﬁ;-i—>
M(_l)ﬂz—ﬂ
I'(a)I(y—p)

1
F(ﬁ,ﬁ-{—l-—y;ﬂ-i—l—a;-z-) (A4)
Appendix B

The incomplete gamma function is a generalization of

the well known gamma function.
o0

I'(a) =/ e lar

0

The difference arises from the lower limit of integration
in the integral definition of the incomplete gamma func-
tion. .

(B1)

o0

I'(a,x) = / e 't*dt
J
The incomplete gamma function has the series represen-
tation.

(B2)

( 1)" xa+n
r(a) Z n'(a + n
where I'(a) is the gamma function of argument a.
Omitted are the a-values of 0, -1, -2, etc. This repre-
sentation has been used in our work to calculate the
value of the function.

I'(a,x) (B3)
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