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THE EVOLUTION OF VISCOELASTICITY NEAR THE GEL POINT OF END-
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Abstract: melimarviscoelasﬁcityofpolymmardnegelpoimcanbedcscﬁbed
by two scaling laws. The material at the gel point has a power-law lincar
viscoelastic relaxation modulus, and the relaxation exponent has been found to vary
with the composition of the precursor materials, i.e., it is not universal for gelation.
A second scaling law describes the evolution of the linear viscoelastic properties
through the gel point. The rate of change of the dynamic mechanical

us/viscosity is observed to scale as a power-law function of frequency. This
power-law function defincs a dynamic critical exponent, and this has been found to
be independent of precursor comsosilion for end-linking poly(dimethylsiloxane)
polymers and equal to x = 0.21 1 0.02. This exponent may be a universal measure
of gelation. The technique of Time Resolved Mechanical Spectroscopy is used to
observe the evolution of linear viscoelastic properties of crosslinking polymers in
situ_in the theometer. A stretched exponential relaxation modulus describes the
evolution of mechanical properties in the vicinity of the gel point very well. The
exponents which characterize the divergence of the zero-shear viscosity and the
equilibrium modulus are not universal, since they are related to the relaxation

exponent and the dynamic critical exponent.

INTRODUCTION

The crosslinking of polymers is distinguished by the occurrence of gelation, which is a
liquid-solid phase transition exhibiting critical behavior. The critical point is termed the gel
point, and the material at the gel point is termed a critical gel. Rheological properties provide
one of the most convenient measures of the evolution of crosslinking. Traditionally, a material
was said to be at the gel point if simultaneously the zero-shear viscosity was infinite and the
equilibrium modulus was zero. More recently, Chambon and Winter [1, 2, 3] arrived at a new
mechanical definition of the gel point based on the observation that the entire relaxation
spectrum is affected by the gelation transition. At the gel point, the relaxation time spectrum
follows the relation

_ H(\) =HoA™ m
and as a consequence the relaxation n;odulus is a power-law (with Hp = ST(@m)):
G =St )

with just two material propertics, the relaxation cxponent, n, which is restricted between 0 <n
< 1, and the gel strength S. Each of these propertics was found to depend on the composition
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of the precursor materials [4]. Deviations from this scaling behavior are expected at very short
times where different polymer dynamics dominate, i.c. equations 1-2 are valid above a
characteristic shortest relaxation time, A(, which is dependent on the precursor material [4].

The gel point is difficult to determine precisely by measurement of the equilibrium
rheological properties because these diverge at the gel point. The zero-shear viscosity evolves
as

10 ~ (Pc - p)"* (for p <pc) ©)
and the equilibrium modulus grows as
Ge ~ (P - pc ) (for p > pc) @

where p is the extent of reaction and pc is the critical extent of reaction. The equilibrium
properties must be measured at very low frequencies since the longest relaxation time also
diverges at the gel point. The equilibrium properties are also difficult to measure because they
require large strains, and these have been shown to alter the structure and properties of
polymers near the gel point {5]. Dynamic mechanical techniques alleviate both of these
complications as the propertics at intermediate frequencies evolve continuously and only small
strains are used to probe the material. The determination of the critical exponents is further
complicated by experimental uncertainty of the critical extent of reaction.

It is expected that the critical exponents s and z are related to the evolution of the
rheological propertics on intermediate time scales because of the existence of mechanical self-
similarity at the gel point (eq. 2). This paper describes this relation and a method for
determining the critical exponents characterizing the evolution of rheological properties during
gelation. The results suggest that a simple “stretched” exponential constitutive equation can
describe the linear viscoelasticity of crosslinking polymers over a wide range of time and extent
of reaction.

EXPERIMENTAL PART
We have previously described the technique of Time Resolved Mechanical
Spectroscopy for characterizing the crosslinking material at intermediate frequencies in situ
without stopping the reaction [6]. Small strain oscillatory shear is used to obtain the spectrum
of linear viscoelastic properties over a finite window of frequency. Sample mutation, defined
by

1 -
Nmu = Atr 6 %G; <<1 (5)

is accounted for during the measurement of some property G over the duration of measurement
Atr. Here tr denotes the reaction time which is to be distinguished from the independent
variable t of a rheological constitutive equation. Since Ny (~ 00<1+%) | see ¢q.8 ) increases
with decreasing frequency in the vicinity of the gel point, this technique is hcccssarily restricted
to a finite range of frequency.

Poly(dimethylsiloxane) (PDMS) was crosslinked by an end-linking reaction between
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the pre-polymer ends and a multifunctional crosslinker molecule. Several different precursor
compositions were prepared with two different pre-polymers, one a Mp ~ 10,000 (ng = 0.5
Pa s) pre-polymer (HULS-Petrarch PS442), and the other a Mp, ~ 54,000 (ng = 65 Pa s) pre-
polymer (HULS-Petrarch PS448). Some samples were modified by the addition of a diluent
(an inert PDMS with Mp ~ 10,000, ng = 0.5 Pa s, HULS-Petrarch PS042). Several
stoichiometries were studied by controlling the concentration of a four functional crosslinker
(HULS-Petrarch T1915). More complete details of the sample preparation and rheological
characterization can be found in [4].

RESULTS
The evolution of the dynamic mechanical properties is shown in figure 1 for the Mp ~
10,000 pre-polymer with the four functional crosslinker [4]. Data for five different frequencies
are shown. The properties at these intermediate frequencies evolve continuously through the
gel point. The gel point at approximately 62 minutes was jdentified as the instant when the
dynamic modulus became a power-law function of frequency:

G ~ G" ~ mn (6)
and the phase angle between stress and strain was independent of frequency:
8(w) = constant = n®/2 Q)]

There is no sharp change of slope in the evolution of these intermediate frequency properties
near the gel point.

The in situ characterization of rheological properties provides important information
about the kinetics of gelation. A sketch of the evolution of the dynamic mechanical properties
is shown in figure 2. The dynamic modulus at zero frequency diverges from zero to a finite
value at the gel point (scc eq. 4), but intermediate frequencies evolve continuously through the
gel point, and the rate of change of the dynamic moduli (9G*/dty) increases with decreasing
frequency. The data from figure 1 are used to calculate the rate of change of the dynamic
moduli as a function of frequency at the gel point as shown in figure 3. Also shown are the
rates of change of the dynamic loss and storage moduli G’ and G”. We find that the first p-
derivative of the dynamic modulus scales as a power-law:

t 3
ogG"  UGEG™ . ™ (for p~ po) (8a)

This scaling would be evidenced in the time domain as

g8 . ¥ for p~po) (8b)

The slope of the lines in figure 3 is the value of the exponent K, which we term the dynamic
critical exponent. We expect this relation to be valid between a shortest and longest relaxation
time, AQ <t < Amax, or in the frequency domain, 1/Amax < ® < 1/A0. This exponent thus
dictates the evolution of properties on all time scales including the equilibrium or zero-
frequency properties. Precise knowledge of the critical point is not required to determine K
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Figure 1a-b. Evolution of the dynamic modulus and normalized phase angle as a function of
reaction time at five frequencies for the crosslinking reaction between a My ~ 10,000 pre-
polymer and a four functional crosslinker molecule. The gel point occurs close to 62 minutes.

because the scaling of equation 8 should hold over a finite range of extent of reaction. The
independent variable p can be substituted by the reaction time, tr, as long as the derivative is
evaluated over a narrow range of reaction time where

Ap -~ At‘- (9)
The value of the exponent determined from the data in figure 3 is k = 0.21 £ 0.01. The scaling
observation appears to be valid over the range of frequency studied, and the exponent K is

constant over the time of the experiment reported in figure 1, although the range of extent of
reaction was not determined.
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Figure 2. Schematic of the frequency dependence of the dynamic moduli near the gel point.
The rate of change of the dynamic moduli (3G*/dty) increases with decreasing frequency near
the gel point. The gel point occurs at ime L.
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Figure 3. The rate of change of the dynamic moduli, G*, G', and G", at the gel point. Rates
8f oclhange are calculated from the data in figure 1. A least squares fit provides x =0.21 £
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This experiment has been repeated on over thirty different pre-polymer compositions.
The composition was varied by changing the stoichiometry, chain length and concentration of
the precursor materials [4]. Although the relaxation exponent and gel strength varied over a
wide range (0.2 Sn <09, 1 < S <105 (Pash)), x takes on a constant value within
experimental error: the average value of 30 experiments is

x=0.21+0.02 (10)

GELATION THEORY

An observation such as equation 8 suggests a simple model for the evolution of linear
viscoelasticity during crosslinking. Further, we expect that the exponent « should be related to
exponents which characterize the evolution of structure. Theories of gelation describe the
evolution of cluster growth by statistical methods. They predict a critical point at which an
infinite cluster first appears. There are two established theories: the first is termed classical
theory {7, 8], and the second is termed percolation theory [9, 10]. These theories can be
distinguished by their predictions of the critical exponents which describe the structure of the
clusters. The cluster number distribution function NM is expected to be a power-law of mass

M at the gel point [10}:
Num ~M " (for p = pc) an

The exponent 1 is termed the polydispersity index. Similarly, the cluster radius RM should be
a power-law of mass M:

Ry ~ MY (for p = p,) (12)
The exponent df is tered the fractal dimension.

Scaling theory attempts to describe the evolution of clusters for all extents of reaction.
The scaling equation is {10}

NM(pM) = M 0] 13)

where f is a cutoff function, and Mmax is the molecular weight of the largest cluster. Mmax
diverges defining a critical exponent G that describes the evolution of cluster sizes in the
vicinity of the gel point:

Mmax ~ |p-pc| % , (14)

It is common to write the cutoff function in terms of x = (M/Mmax)© rather than x = M/Mmax
to avoid divergences of p-derivatives of NM at pc, and so:

NM(p) = M *f[(p-pc)M°] %)

There are two independent exponents, 1 and df, which describe the structure of " critical gel,
and one, &, which describes the evolution of the structure in the critical region.

We expect a similarity between the evolution of static structure and the dynamic
properties, so it is natural to write [11, 12, 13]:
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t
G(t.p) = G(t,pc)-fl—] 16
(t.p) (Pc)f[’ ] (16)

where £ is a cutoff function and Amax is the longest relaxation time of the material which
diverges in the gelation threshold defining the dynamic critical exponent K.
Amax ~ Ip - pel ™ an

where an assumption is made that the critical exponent x has the same value before and after
the critical point. The data in figure 1 support this assumption since the intermediate frequency
properties evolve smoothly through the gel point. The form of the cutoff function for all
extents of reaction has to be determined by experiment, however, a stretched exponential
function similar to that used to describe the evolution of structure may describe the behavior in
the immediate vicinity of the gel point:

Gt p) =S t " exp(- (——)") (forp < (182,
®p) exp( (xm)x)(“p po) )

and applying equation 17,

G(t, p) =S t " exp(-c(pc-p)t ) (for p < pc) (18b)

where ¢ is a material parameter which only depends on temperature.

The proper form of G(t) for the post-gel is not yet established. The stretched
exponential equation diverges as t — o= for a positive argument in the exponential term,
however, it may describe some of the intermediate time scale behavior, t < Amax.

DISCUSSION

We find that the evolution of rheological properties near the gel point can be described
by two critical exponents, one for the rheological behavior at the critical point, and a second
one for the evolution through the critical point. The dynamic critical exponent K seems to adopt
a universal value for gelation, while the relaxation exponent, n, the critical exponent of the
relaxation spectrum at the critical point, is not universal but instead depends on precursor
composition. Winter [14] showed that the exponents s and z describing the equilibrium
propertics are related to n and x by

g=1ln (19)
X )

z=2 (20)
X

and thus these exponents are also not universal.
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Table 1. Predictions of the dynamic critical exponents.
Rescarch Group s z n 3

de Gennes [15, 16) 0.7 1.7 0.7 0.4

Martin et al. [12, 17] (8-2ty60 (=-1yo 3(r=1)/(2t+1) 30/(2t+1)
(percolation theory) 4f3 83 23 1/4

this work (1-n¥x n/x
(experiments) O0<s<S5s 0<z<5 O<n<l1 0.21

There have been several predictions of the critical exponents s and z. De Gennes [15,
16] proposed analogies between the divergence of mechanical properties during gelation and
other critical phase transitions and predicted s = 0.7 and z = 1.7 (equivalent to stating n = 0.7
and x = 0.4). Martin et al. [12, 17] related s and z to static structure exponents, and using
percolation predictions, proposed s = 4/3 and z = 8/3 (equivalent to n = 2/3 and x = 1/4). A
summary of these predictions is given in table 1. Measurements of s and z are scarce in the
literature. Adolf et al. [18) recently studied an epoxy resin and measured s = 1.4 £ 0.2. Adam
ct al. [19] studied a polyurcthane system and reported values over a range 0.6 <s < 0.9 and
1.8 £z <3.9. The limited number of experimental studies reporting these quantities support
the conclusion that these exponents are not universal. In our experiments, the calculated values
of the exponents s and z vary from about 1 to 4. If x is indeed a universal value of 0.2, then s
and z are limited 0 0 <s,z < 5. :
The longest relaxation time and the characteristic molecular weight should be related by
a scaling relation:
Amax ~ MmaxA @1

where A is a scaling exponent. The reptation theory for narrow-distribution entangled linear
polymers predicts A =3, while for the Rouse model of unentangled polymers predicts A = 1.
According to the scaling equation, X is related to ¢, the exponent characterizing the largest
molecular weight, by

K =0/A 22)

The experimental value of G appears to be close to the percolation prediction of ¢ = 0.46 and
the classical theory prediction ¢ = 0.5 [20, 21]. Using our result for x together with the
percolation theory yields A = 2.15, while the classical theory yields A = 2.34. In cither case,
this scaling exponent for branched polymers is intermediate between Rouse and reptation
theories.

Because of the similarity of the cluster growth process, we speculate that the stretched
exponential may be valid above the gel point as well. In fact, the data suggest a symmetry
about the critical point. That is, log[G(t)] as a function of log[t] appears to be symmetric about
the function G(t; pc) on time scales t < Amax. In order to apply the stretched exponential, the
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divergence at long times must be accommodated. One approach is to separate the relaxation
modulus into a constant and a transient part. The stretched exponential would take on the form

G(t, p) =Ge(p) +S £ expl-clpc-pitX] (for all p) @4)

andhcmtheuansicntpandecmascsandthcoonstantincneaseswithixmeasingpbeymdmegel
point. However, such an approach cannot describe our observations with PDMS networks
over a wide frequency window without making the material propeties, S, n, and x, functions
of the extent of reaction instead of constants.

We have applied the stretched exponential constitutive equation (equation 18) to the data
of Chambon and Winter [1], who determined the mechanical properties of material close to the
gel point over five decades of frequency by using quenched samples. A fit of their data at
several different extents of reaction is shown in figure 4 using the critical gel properties S and n
and the "universal” value of x =0.2. The stretched exponential (equation 18) can describe the
transient response (t < Amax) of the solid (gel) at least close to the gel point, but fails far from
the gel point. There is only one fitting parameter in figure 4, the extent of reaction, since it was
not measured during these experiments. Future experiments that simultaneously measure p and
the rheological properties will be a more complete test of the constitutive equation. The
proposed constitutive equation is not expected to describe all extents of reaction; instead it will
have to be more general to be able to describe the limits of the Newtonian fluid and the
Hookean solid.
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Figure 4. Comparison of the dynamic moduli reported by Chambon and Winter [1] with a
stretched exponential function (equation 18) for various extent of reaction. The fit has only one
fitting parameter, the value of c(pc-p), since the extent of reaction was not measured during the
experiment. Constants for the fit are S= 230 Pa s", n = 0.52, and x = 0.20. The values of
c(pc-p) are -5, -1.45, 0, and 0.45.
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CONCLUSIONS

The dynamic modulus G*(w) grows monotonously through the gel point. No change
in slope is observed near the gel point at intermediate frequencies. A discontinuity is only
expected for the limit of zero t‘mquenéy which cannot be measured. The rate of change of the
linear viscoelastic properties follows a power-law dcpendeﬁoe of frequency near the gel point.
The self-similarity of lincar viscoelasticity in the vicinity of the gel point permits the
determination of the dynamic critical exponent without probing at zero-frequency and without
having to determine the extent of reaction. Many experiments on poly(dimethylsiloxane)
polymers with widely varying precursor composition indicate that the dynamic critical exponent
takes on a universal value of x = 0.21 £ 0.02. Because the critical exponent characterizing the
critical point relaxation is composition dependent, the exponents characterizing the evolution of
the zero-shear viscosity and equilibrium modulus are also composition dependent, and not
universal. Our observations suggest that the linear viscoelasticity of polymers near the gel
point can be described by a stretched exponential relaxation modulus over a wide range of time
and extent of reaction.
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