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Vlscous dlSSlPEI.tIOl’l causes 51gmﬁcant temperature increases

in polymers while they are flowing through extruder dies. The

development of the temperature field has been studied numeri-

] & cally using the dimensionless parameters Na and Gz. With the
: yar annular geometry (parameter: ratio of radii «) the well known
s devéloping temperature fields in capillaries could be compared
 with the developing temperiture fields in an anpulus and in a

pl:me slit. The shear dependence of the viscosity-is described

by & “power law” and the temperature dependence by an ex-

. h ~ponent1al function. A simple graphlcal method is suggested -for
o " gstimating temperature fields in extruder dies, méking use of .

bl
-

.+ INTRODUCTION

In extrusmn 2 molten polymer is forced through
a die by a pressure grad.lent The specific energy
needed to maintain, the flow is equal to the pressure
drop along the die.:Most of this energy is being
dissipated, mainly in the zones of large shear stress
close to the walls. For the design of .extruder dies,
one wants to know:

e How much the tempelature Beld in: the melt
is influenced by the dissipation of low energy and
by heat conduction towards the walls, and

e How one can change the temperature feld
through geometry and tlnough the therrml boundary
condijtions.

For the flow in dles used in pipe extrusion, mono-

filament extrusion, sheet extrusion, Rlm blowmg blow -

molding, caplllary rheometry, ete., (i.e. flow in chan-
nels of annular, circular, or slit cross-section) we
can predict the temperature fields quite accurately.
Knowing the developing temperature field, it is
possible to calculate the temperature elfects on the
velocity field, on' the sheai stresses, and on the pres-
sure drop.

The developing tempelature field in a capillary

has been studied analytically by a number of authors: -

In a first solution Brinkman (1) assumed the vis-
cosity and the thermal properties to be constant.
Bird (2) extended the analysis to generalized New-
tonian fluids, where the shear viscosity depends on
the shear rate by a “power law.” Developing tem-
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ks -:fhe fully-developed temperature field for very long dies as a .. : i
' _rdference state. For the demonstration of results, a power law
exponent n = 0.4 has been chosen.

peratures have been calculated fcn isothermal and
for adiabatic capi]laly walls. Toor (3) studied the
influence of cooling resulting from assumed spon-
taneous expansion during fow. Density and expan-
sion coeflicient were taken from equlhbrlum thermo-
dynamics data at the pressure p in molten polymers
at rest. Gee and Lyon_(4) used a.numerjcal method
to take into account temperature, and shear depen-
dence of viscosity, zero-shear-rate viscosity (in a mod-
ified’ power:law), and cooling from expansion. For

‘the momentum and the mass balance the [luid has

been assumed to be mcomples‘;]ble The wall tem-
perature has been chosen to be constant, but differ-
ing from the Huid temperature at the inlet. Recently
Galili and Takserman-Krozer (5) used a perturba-
tion method to get, a first order appmum’thm of

" the. velocity and pressure distribution for a New-

tonian fluid with temperature’ dependent viscosity,
constant density and constant thermal properties.

Numerical methods seem to be the most adequate
for calculating the developing temperature field. Due
to the difficulties in applying knowledge from pub-
lished numerical solutions to their individual prob-
lems, several authors (6-12) developed their own
numerical capillary program using mostly explicit
difference methods. This study uses an iterative im-
plicit method which conserves mass, energy, and
momentum.

Experimental studies have been made on the effects
of temperature on the pressure drop (1, 4, 6, 8, 11,
13), the average temperature increase (9, 11, 13),
the wall temperatures (4, 6, 13) the wall heat flux
(8, 14), and the radial temperature distribution
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(6, 8, 15-17). The experiments seem to support the
corresponding analytical studies quite well.

Under certain experimental conditions it is pos-
sible to have an adiabatic wall (8), but it doesn’t
seem to be possible to maintain isothermal wall
conditions when viscous dissipation is significant (86,
11, 13, 15, 18). In applications, the wall condition
is in between adiabatic and isothermal; the most
needed information from experiments is about the
actual thermal boundary conditions, which have to
be used in a numerical program.

In contrast to the rather complete investigation
for the capillary, the developing temperature field
in an annulus and in a plane slit has seen only limited
study. Seifert (10) calculated the developing tem-
perature field for a Prandtl-Eyring-fluid flowing in a
plane slit; his main interest has been on the heat flux
at the walls for symmetric and asymmetric wall
temperatures. Cox and Macosco (11) investigated
the temperature effects in dies of this geometry.
They take into account shear and temperature de-
pendence of viscosity as well as density changes.
However, they describe their results by means of
the heat transfer coefficient, which has no physical
meaning for flow with viscous dissipation. Due to
the large viscous dissipation in the layers mext to
the wall, there exists no simple relation between
temperature gradient at the wall and difference be-
tween wall temperature and bulk temperature.

The present investigation wants to show the com-
mon temperature effects in the flow of molten poly-
mers in different axisymmetrical die geometries. The
numerical solution of the problem is presented graph-
ically. Thus, by graphical means, it is possible to
predict the increase of the average temperature in
the .die as well as the temperature field, using the
values of the dimensionless parameters shown below.
Recently, the numerical program has been applied
to the design of dies for a capillary viscosimeter (18).

ASSUMPTIONS, SYSTEM OF EQUATIONS

A large number of dies are described geometrically
by an annulus with the ratio of the radii

w=rfr, 0=n<1 (1)

if one includes the limiting cases »x = 0 (die with
circular cross-section) and » = 1 (slit die). The
cylindrical coordinate system is the natural one for
the problem (Fig. I). The position in the die is
given by the dimensionless coordinates
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Fig. 1. Annular flow channel.
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The dimensionless coordinate Y is very powerful for
describing the influence of the geometry, ie., the
influence of w: the isothermal velocity feld (F ig. 2)
in a plane slit (x = 0.99) is symmetrical to the center
of the slit (Y = 0.5). With decreasing » the max-
imum of the velocity field moves towards the axis
of the annulus. For the die with circular cross sec-
tion (x = 0) the velocity field is symmetrical to ¥

The value of Z indicates, as it will be shown in
the following, how much the temperature feld
is developed along the die. The shear dependence
of the viscosity® is described by a “power law” and
the temperature dependence by an exponential func-
tion

_ h R i—1
q:qexp[—b-(T—To)]( ai) (4)

v, or
77=v(

. 1,)
is the reference viscosity.

Instead of this, it also would be possible to use a
viscosity table for the computer program. Also the
temperature dependence of n can be included, if
one uses the computer program instead of the graph-
ical method proposed. Throughout this paper, the
power law exponent is taken to be n = 0.4 (which

where

|

-

¢ Viscosity is the one of three material functions describing the shear
stress in “steady shear Row” (defined by a history of constant tem-
perature and constant shear rate). The flow in dies is nearly steady
shear flow only, since (a) the temperatures change along the strenm
lines, nnd (b} the shear rates nlong stream lines change slightly due
to the temperature changes. The stationary layer of polymer next to
the wall, however, is subjected exactly to steady shear flow, because

temperatures and shear rates are constant with time (3/8t = 0).
Ao TN parameter x =1 /1,
Y= r-=r
a i
I T T
x =0.0
0.5}~ g/
x=0.20 =0
x=0.50
x=0.99
v/ v
t I
OO 0.5 | 1.5

Fig. 2. Velocity profile of an isothermal power law {fluid in an
annulus; n = 0.4.
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is, for instance, a reasonable value for low density
PE at 190°C).

The equations of change describe the flow in dies.
They were simplified by the following assumptions

e Incompressible, isotropic fluid with constant
thermal properties. (The temperature and the pres-
sure dependence of the density and of the thermal
properties can be accounted for in the numerical
program as long as material data is available.)

e Steady laminar flow (2/2t = 0).

e Rotational symmetry (2/06 = 0).

e Radial velocity component v, << v, av,/or,
ov,/0,, 0v./0z < < dv,for.

e Kinematically developed velocity profile in the
entrance section. (For low Reynolds number flow of
inelastic fluids, this has been shown (19) to be a
reasonable assumption. }

e The pressure is a function of z only.

@ No slip at the walls.

e Heat is transported axially by convection and
radially by conduction only.

The system of partial differential equations for
the problem is the following (after applying the
assumptions ),

Equation of continuity:
0 i ov,
Z%T—(mr)'l“ - (5)
Equation of motion:
op o ou,
(RN SONELIN (S y I 1

0z ror or

Equation of energy:

v, oT 2 ( aT) n ( oo, )2 7
_— e\ — —e
a oz ror or + k or

The average velocity is

Ezz—-z—itr“rv,dr (8)

r2—r2

The boundary and the initial conditions for the ve-
locity and for the temperature field are:

Boundary conditions:

0,(ryz) = 0,(re,z) =0 l
Ur(ri:z) — U,-(Ta,z) =0

B i
Tin ) =T, ot 8T o g = 2 49
T(r,z) =T,

Initial conditions:

n=r=<r

a

0:(1,0) =0:,(r)
T(T,O) :Tﬂ }

The equation of motion ( Eq 6) and the equation of
energy ( Eq 7) are coupled through the temperature
dependent viscosity. The extent of the coupling in-
creases with the value of the Nahme number (20)
0,2by
k

Na =

(10)

which compares the dissipation term and the con-
duction term in Eq 7. For values of Na greater than
0.5 to 1 (depending on geometry and thermal bound-
ary conditions) the viscous dissipation leads to sig-
nificant viscosity changes. For smaller values of
Na isothermal conditions can be actually achieved
in extruder dies by taking a constant inlet tempera-
ture equal to the temperature of the die wall. In
this case the equation of motion can be integrated
easily, even for the annular geometry (21).

In some studies the Brinkman number (1) Br =
0.%7/kT, has been used instead of the Nahme num-
ber. But Br contains the arbitrary temperature level
T, and may therefore have very different values for
similar processes. The value of Br does not give
information on the extent of the coupling between
the equation of motion and the energy equation.
(Note that the Nahme number sometimes is called
the Griffith number after Griffith (22), who used
the same dimensionless group in one of the later
applications. )

The energy equation (Eq 7) contains a convec-
tion, a conduction, and a dissipation term. By com-
paring the convection and the conduction term one
gets the Gritz number (23)

\ 0.k
Gz =

(11)

al
which has been included in the dimensionless form
of the z-coordinate. A large value of Gz means that
heat convection in the flow direction is more im-
portant than conduction towards the walls. Gz =
100 is a common value for extruder dies. (Note that
some authors define the Graetz number Gz-=.)

In very short dies (Gz > 10°) conduction of heat
becomes negligible compared with convection, i.e.,
the conduction term in Eq 7 can be neglected and
the ratio Na/Gz becomes the dimensionless param-
eter. If the pressure drop Ap in the die is known from
experiments, one can estimate the importance of
viscous dissipation from the dimensionless product
Ap-b/pc (which is equivalent to Na/Gz). For values
Ap-b/pc > 0.5 the viscous dissipation leads to sig-
nificant viscosity changes.

The boundary and the initial conditions for the
temperature field are not known in general. If there
are temperature data for the entrance and along
the walls, they can be used in the numerical pro-
gram. But most often one has to guess these condi-
tions to enable an estimate of the temperature pro-
files; for this presentation I took two idealized bound-
ary conditions: constant wall temperature and zero
temperature gradient at the inner wall, respectively.
The outer wall has been assumed to be isothermal.
At the entrance, a constant temperature equal to
the wall temperature is assumed, which can be
achieved in extruders through a mixing element at
the tip of the extruder screw.

One gets a system of three nonlinear partial
differential equations and an integral. It has been
solved numerically by an iterative implicit differ-
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ence method. The solution procedure and the ex-
perimental check of the solution has been described
in a previous report (24) on helical flow of molten
polymers. The temperature effects in helical flow
and in die flow are very much the same, and it
doesn’t seem to be necessary to perform additional
experiments for the different die geometries.

RESULTS

The temperature field in dies is determined (1)
by convection in axial direction, (2) by conduction
in radial direction, and (3) by viscous dissipation.
In Figs. 3-5, examples for developing temperature
fields are shown for two values of the Nahme num-
ber. The temperature of the polymer melt increases
in the flow direction by the effect of viscous dissipa-
tion. The radial temperature gradients become in-
creasingly steeper up to the point where the fully
developed temperature field (9T /3z = 0) is reached.
From that point on, all the dissipation is balanced
by radial conduction; convection has no effect, be-
cause in the direction of flow the temperature doesn’t
change any more.

Z=0.0l1
0.5

isothermal wall
Fig. 3. Developing temperature field in a pipe; n = 0.4.
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Fig. 4. Developing temperature field in a plane slit; n = 0.4,
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Figure 6 shows the increase of the average tem-
perature along the die, normalized by the maximum
possible temperature increase. For flow in a slit
die, the highest and lowest curve describe the de-
velopment at different thermal boundary conditions.
Both curves have about the same shape, but in a
plane slit with two isothermal walls the fully de-
veloped temperature field is reached in about one
fourth of the length compared with a slit with one
wall adiabatic and one wall isothermal.

For smaller values of =, the corresponding curves
for the two kinds of boundary conditions move to-
gether, which can be explained easily: the thermal
boundary condition at the inner wall of the annulus
becomes less and less important, when the inner
surface decreases with smaller values of ». The curve
in the middle shows the average temperature in-
crease in a pipe with circular cross section (% = 0).

_ Surprisingly, the development of the (dimension-
less) average temperature depends very little on
the values of Na, i.e., the curves for Na = 1 shown
in Fig. 6 are practically identical with curves for
Na = 10. The shape of the radial temperature pro-

0] 0.5 1.0

isothermal walls
Fig. 5. Developing temperature field in a plane slit; n = 0.4.

T-To
Teo—To

10-3 5-107* 10-2 5-1072 10! 5407 1 2

. —annulus: isothermal walls
boundary conditions { —--circular cross.: isothermal wall
~=annulus : inner wall adiabatic,
outer wall isothermal

Fig. 6. Average temperature increase alon% channels with
dz‘ffercnt geometries and different thermal boundary condi-
tions; Na = I; n = 0.4.
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files (Figs. 3 to 5), however, depends on Na. The
dimensionless temperature rises are all in the same
order of magnitude due to the choice of (T T.)
as a normalizing factor; the absolute values of the
temperature rise (T — T,) increase very much with
increasing Na.

In general, extrusion dies are too short (Z < 1) to
obtain full thermal development. Therefore, special
attention has been paid to the initial development
of the temperature field. The fully developed tem-
perature field is used as a reference state only. A
survey of the fully developed temperature field is
given in the literature (25).

Figure 7 shows the maximum possible temperature
increase b+ (T- — T,) as a function of Na, %, and
the thermal boundary conditions. Depending on the
thermal boundary conditions, the plain slit may give
the highest or the lowest temperature increase. For
decreasing values of » the curves depend less and
less on the boundary condition at the inner wall.

GRAPHICAL METHOD

For a certain value of Na, which can be calcu-
lated from the average velocity in the die and from
the properties of the molten polymer, the maximum
possible temperature increase in a long die can be
determined from Fig. 7. Then the value of Gz has
to be calculated to give the range of Z for the die
and the average temperature increase in that range
(from Fig. 6). Figures 3 to 5 show examples of

A b (Teo-To ) _0.99
W—T—7T T T " IparameterTx: —0.80
10 ~0.50

—0.20
9 —
inner wall adiabatic :0-0F
s—outer wall isothermal
7 / —
6 -
/ 0.0l
5 | 0.20
//_0.50
»*K0.80
4 _| 0.99
3 p—
2
| _
o} [ NE
¢ I 2 3 4 5 & 7T 8 9 10

Fig. 7. Average temperature increase in long channels; n =
04.
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graphs for the estimation of the radial temperature
profiles.
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NOMENCLATURE
a = thermal diffusivity, m?/sec
b = temperature coefficient of viscosity, K-,
— ¢y/70T, see Eq 4
Gz = Graetz number, v.h%/al [—]

h = r, — r; = gap width, m; h = r, for circular
cross-section

k = thermal conductivity, J/msK

I = die length, m

n = power law exponent, see Eq 4

Na = Nahme number, 0,°b3/k [—]

p = pressure [N/m?]

1,7,7; = radial coordinate, outer and inner radius, m

T = temperature, K; T = 2/(1 — ';'.2) S Tor/
(D )d(r/rs)

v,,v. = velocity components, m/s

o, = average axial velocity, m/s

Y = coordinate, see Eq 2

z,Z = coordinate, see Eq 3

# = r;/r, = ratio of radii

7 = viscosity, Ns/m? see Eq 4

7 = viscosity at reference shear rate, v./h, and

reference temperature T,
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