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1. Introduction

Polymer processing and applied polymer rheology occur at relatively high
temperatures and often at high temperature gradients. In molten polymers,
large stresses are required to maintain the flow and, additionally to convective
and conductive heat transfer, temperatures essentially depend on viscous
dissipation, i.e., on conversion of mechanical energy into heat. Velocity and
temperature fields influence each other: the temperatures influence the flow
through the temperature-dependent rheological properties, and the velocities
influence the temperatures through convection, through dissipation, and
through anisotropical effects (which are investigated very little) on the
thermal properties.
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Research in rheology and in thermodynamics related to heat transfer
problems is mostly done separately, by rheologists on molten polymers or
polymer solutions at constant temperature, and by thermodynamicists on
polymers at rest. The difficult task of combining the two areas is left to the
polymer engineers (see for instance [1-4]). A number of assumptions have
to be introduced into the heat transfer analysis before applied problems can
be solved.

The different flow problems involving heat transfer and viscous dissipa-
tion can be classified in groups as shown in Table 1. Each of the groups is
characterized by different rheological phenomena, and one has to choose
very different rheological constitutive equations to describe them. The two
main groups are channel flow (including flow geometries with partly solid and
partly free boundary) and free surface flow (with no solid boundary). In
polymer processing, channel flow of molten polymers occurs in a large
variety of flow geometries. The polymer is forced through a channel by a
pressure gradient (flow in an extruder die, for instance), or it is dragged along
by a moving wall (rotating screw in a stationary cylinder, for instance). Very
often both types of flow are superimposed on each other. Free surface flow
for example occurs in film blowing or fiber spinning.

TABLE 1
CLASSIFICATION OF HEAT TRANSFER AND Viscous DISSIPATION IN MOLTEN POLYMERS

heat transfer and viscous
dissipation in molten polymers

channel flow free surface flow
(shear free flow)
shear flow shear flow and
(viscometric flow) elongational flow
superimposed
shear flow with shear flow with (non-viscometric flow)
open streamlines closed streamlines

For rheological reasons, channel flow problems are subdivided into shear
flow (also called viscometric flow) and nonviscometric flow. The separation
of the shear flow problems into one group with open stream lines and one
with closed stream lines has to be made since their thermal development is
different.

Throughout the first section, the heat transfer problem will be considered
in general, i.e., the relevant equations are listed in a general form and the
properties are described. The rheological properties of the molten polymers
have to be formulated differently according to the various flow types since
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the length of the following sections is supposed to reflect the degree of under-
standing of the respective flow and heat transfer problems.

In Section II, heat transfer in shear flow will be analyzed. A large emphasis
will be laid on replacing the commonly used idealized boundary conditions,
i.e.,, constant wall temperature or constant wall heat flux (with the limiting
case of the adiabatic wall), by more general conditions. In practical applica-
tions, the idealized conditions will rarely occur; actually it is difficult to
achieve them even in especially designed model experiments. To make the
analysis applicable, heat transfer in a flowing polymer should not be studied
separately inside the fluid, but together with the surrounding wall.

In this analysis the heat transfer at the wall is described by an outer tem-
perature difference (temperature of the surroundings minus temperature at
the boundary) and the Biot number, which otherwise has been used success-
fully for describing the boundary conditions for temperature calculations in
solids. The Biot number is appropriate for describing boundary conditions
between isothermal and adiabatical, as they occur in real processes. Addi-
tionally, the thermal capacity of the walls is included in the analysis by
introducing the capacitance parameter C.

Heat transfer in viscometric flow has been studied quite extensively in the
literature, and at the present state it seems to be necessary to show the many
common aspects of the different studies. Thus, as the main goal of this study
a unifying concept will be developed. This concept makes it possible to
comprise the most important shear flow cases into a single one, which can be
solved with one numerical program.

For Section III on nonviscometric flow in channels and flow with free
boundaries, the description will not go much further than stating the prob-
lem, showing the present methods of solution, and listing references. Since
nearly all of the results in this report are on shear flow, the title is taken to
be “in shear flows” even if the problem is stated in a general form and Section
I1I is on nonviscometric flows. '

Heat transfer in non-Newtonian fluids at negligible viscous dissipation is
not included in this report (see instead [5—7]), although it can be treated as a
limiting case of the corresponding flow with viscous dissipation.

A. SysTEM OF EQUATIONS

The problems are governed by the equations describing the conservation
of mass
op/ot + V-(pv) =0 1y

and the conservation of energy

p De/Dt = V- (kVT) + a :Vv, (1.2)
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by the stress equation of motion
pDv/Dt =V -a + pg, (1.3)

and by the constitutive equation which will be described below, together
with the appropriate flow geometries. The three equations above are derived
and tabulated in textbooks (see for instance [8]) for different coordinate
systems. :

8/d denotes the partial and D/D the substantial derivative; V is the “nabla”
operator. Density p and thermal conductivity k are properties of the fluid.
Velocity v, internal energy e, temperature T, time ¢, and stress ¢ are the
variables. The stress o is defined in such a way that the force on the positive
side of a surface element of unit area and normal vector nisn * 6.

The equation of energy says that the rate of gain of internal energy per
unit volume (p De/Dt) is equal to the rate of internal energy input by conduc-
tion per unit volume V - (k VT) plus the rate of work by the stress on the
volume element & :Vv, which is being partly stored and partly dissipated
during the flow. For heat transfer studies, the internal energy has to be
defined in terms of the fluid temperature and the strain and stress variables.

Incompressible fluid: In rheology the fluid is usually supposed to be incom-
pressible (even when properties such as the viscosity are allowed to depend
on pressure). The flow geometry, the temperature, and the rheological prop-
erties of the fluid determine the stress completely, except for an arbitrary
added isotropic pressure [9]. Therefore, the stress is commonly separated into
an arbitrary pressure p and the extra stress 7, which is defined in the rheolog-
ical constitutive equation, viz.

c= —pd+r (1.4)
& denotes the unit tensor.

In some flow problems, it is convenient to define the isotropic pressure p
to be equal to one of the normal stress components in a certain coordinate
system (p = —6,;, P = —0,,,0r p = —033), while in other flow problems
it might be preferable to define p = —(trace 0)/3.

For an “incompressible” fluid, the change in internal energy and the work
of the stress per unit time are determined by

p De/Dt = cp DT/Dt, (t5
o:Vv= —pV- v + 1:Vy, )

and Eq. (1.2) becomes
cp DT/Dt =V -+ (kVT) + t:Vv. (1.6)

The specific heat capacity c is defined as the thermal energy needed per
unit mass and Kelvin degree for changing the temperature of a material.
Since the density is taken to be constant, ¢ has to be measured at constant
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density. If the fluid were really incompressible, the specific heat should be
the same for measurements at constant density (c,) or at constant pressure
(c,). From thermodynamic data at rest (Eq. (1.11)), however, one finds that
¢, and ¢, of polymer melts differ by about 10%.

Compressible fluid: There are difficulties in relating strain and stress in
deforming materials that are slightly compressible. One commonly assumes
that the deformation can be separated into two parts: a deformation at
constant density and the volume change [10]. Neglecting the influence on
each other, the deformation at constant density is described by the consti-
tutive equation, and the density of the flowing polymer is determined from
equilibrium data p(T, p) measured on the fluid at rest (taking p = —(trace
6)/3).

There also seem to be difficulties in defining the internal energy e of a
compressible flowing fluid: one assumes that e can be described in terms of
p and p only, independently of the other stress and strain variables (see for
instance [8]):

e = e(p, p).

Applying this relation to the flowing polymer melt, the substantial derivative
of the internal energy then becomes

De DT

Dp
—= —pV: T — — 1.
oy pV'v+e Dt+pc"Dt (L.7)
with e = —p~1(8p/8T),, the coefficient of thermal expansion. e and c, are
evaluated from rest data at temperature T and the “pressure” p = —(trace

6)/3. The equation of energy takes the form usually shown in the literature

[11]:
DT Dp
— =V T — :Vv. 1.
pCp Dt V- (kVT) + € Dt + T:Vv (1.8)

From this equation, calculated temperature fields in channel flow (see
Fig. 13, p. 244) show large temperature decreases due to cooling by expan-
sion. The assumptions made above (concerning the density changes and the
internal energy) are rather severe, and further experimental studies are
needed to investigate their validity.

B. THERMAL PROPERTIES

The properties in the analysis are the density p, the specific heat ¢, and the
thermal conductivity k; the thermal diffusivity is defined as a = k/pc. Rheo-
logical properties are defined separately in the constitutive equation.

In a stationary fluid, the density p(p, T) is a function of pressure and
temperature. It can be described by the equation of Spencer and Gilmore
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TABLE I1

MATERIAL CONSTANTS OF EQ. (1.9) MEASURED BY
SPENCER AND GILMORE [12]

polymer b* (1072 m3/kg] p* [N/m?] W [1073 kg/g-mole]
14PE 0875. . 3275 x 10° 28
PS 0.822 1.863 x 108 104
PMMA 0.734 2.157 x 108 100
CAB 0.688 2.844 x 10° 54
[12]:
(1/p — b*)(p + p*) = RT/W, (1.9)

where b*, p*, and W are materié,l constants. Their values are tabulated
(Table II) for some examples of thie most widely used polymers; R = 8.314
[J/K g-mole] is the gas law constant.

From Eg. (1.9) one can evaluate the term €T of the equation of energy

eT =1 — pb*; (1.10)

since b* is always smaller than p~!, the dimensionless product ¢T adopts
positive values smaller than unity.

The density generally is measured on the polymer at rest and in thermody-
namic equilibrium. Dynamic measurements by Matsuoka and Maxwell [13],
however, show a very delayed response of polyolefines to sudden pressure
changes. Thus, the use of equilibrium density data restricts the analysis to
flows of slowly changing pressures. The reaction to temperature changes is
similarly delayed [14]. Additionally the flow might influence the density.

The specific heat commonly is measured at constant pressure. Using the
equation proposed by Spencer and Gilmore, Eq. (1.9), one can determine the
specific heat at constant density c, from specific heat data at constant pressure
c, [4]:

¢, = ¢, — R/W. (1.11)

The thermal conductivity k and the specific heat capacity c, are slowly
varying functions with temperature and they also depend on pressure. In
flowing polymers the thermal conductivity possibly varies with direction. For
most polymers the temperature dependence can be expressed in a linear form

k = k(1 + a(T — To)),
¢, = Tl + a(T — To)).

P

(1.12)

k and T, are values at some reference condition (temperature T), while a,
and a, are the temperature coefficients, which might be positive or negative
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TABLE III

THERMAL CONDUCTIVITY AND SPECIFIC HEAT
CAPACITY OF SOME MOLTEN POLYMERS AT
TeMPERATURES T, (see [15-23])

To cp . k
Polymer [°C] [10° Nm/kgK] [N/Ks]

1.d.PE 150 2.57 0.241
h.d.PE 150 2.65 0.255
PP 180 2.80 —

PVC 100 1.53 0.166
PS 150 204 0.167
PMMA 150 — 0.195

depending on the polymer in question and on the temperature range.
Table I1I shows some values of k and c,. More detailed data on the properties
can be found in references [15-23], for instance.

C. RHEOLOGICAL CONSTITUTIVE EQUATION

For a large number of fluids, which can be regarded as incompressible,
the stress can be described by the Stokes equation

oc=—pdé+np (1.13)

the simplest tensor generalization of Newton’s law of viscosity. Here p is
the isotropic pressure, and § = (Vv) + (Vv)" is the rate of strain tensor; the
viscosity n depends on temperature and on pressure, but not on the time t or
on any kinematic quantities such as j. Fluids that show this behavior are
called Newtonian.

The Stokes equation has been generalized by taking the viscosity n(y) to
be a function of the second invariant of the rate of strain tensor [24]:

6=—pé+ M =GN (1.14)

This equation defines the “generalized Newtonian fluid.” It has been applied
quite successfully to molten polymers in steady shear flow for calculating the
shear component of the stress tensor in an appropriate coordinate system;
however, the normal stress components calculated from this equation are
known to be unrealistic for molten polymers. In general, the equation might
be misleading in its tensor form because it does not allow one to calculate
meaningful stress components in arbitrary coordinate systems. The appro-
priate statement of the rheological equation for molten polymers in steady
shear flow is given by Criminale et al. [25]; their equation will be applied in
Section II.
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The rheological properties of elastic fluids (such as molten polymers) at
any given position depend on the strain and temperature history of the fluid
elements when they arrive at that position, independently of the history of
neighboring particles. Translational and rotational movements do not in-
fluence the stress [9].

Depending on the type of flow, the rheological behavior of molten polymers
is more or less different from the behavior of Newtonian fluids. Up to now
there exists no general constitutive equation to describe all the phenomena
known for a given polymer melt. Additionally, the temperature effects on the
rheological properties have not been studied at all or only at different levels
of homogeneous temperatures. The constitutive equations used will be stated
in the beginning of Sections II and III.

I1. Shear Flow (Viscometric Flow)

In shear flow at constant density, material surfaces move “rigidly” (ie.,
without stretching) across each other. These surfaces are called shear surfaces
[26]. Pipe flow, which is an example of shear flow, sometimes is called tele-
scopic flow since its rigidly moving surfaces are concentric cylinders. In
Fig. 1 the deformation of particle P, at the origin is described by the relative
motion of neighboring planes. On the left (Fig. 1a) an orthonormal coordinate
system is chosen, such that

x, = direction of shear,
x, = direction of velocity gradient,

x; = neutral direction.

tane =\tan 512)2+ (tan :32)Z

Fig. 1. Unidirectional shear flow in cartesian coordinates. Shear flow in the 1-3 plane as
superposition of shear flow along x, and along x;.
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The direction of shear (or shear direction) and related quantities are defined
followmg [26]: an orthonormal coordinate system is chosen to have its x,
axis and its x; axis in a shear surface (see Fig. 1). The x, axis is perpendicular
to the shear surface; it projects point P, onto neighboring shear surfaces.
During shear flow, shear surfaces move past each other, and the normal
projection of P, draws a line on neighboring shear surfaces. This line is
called the shear line. (Note: In the examples of Fig. 1, the shear surfaces are
planes, and the shear lines are straight.) The tangent to the shear line at time ¢
is defined to be the shear direction at time t, and the angle of the shear line
with the x, coordinate is the shear angle @; if the direction of shear remains
constant with time, the flow is called unidirectional. For most applications,
the direction of shear is identical with the direction of flow; an exception is
the othogonal rheometer [26, p. 76], for instance.

The shear rate, the extra stress, and the temperature are supposed to be
uniform in the direction of shear, but they may change perpendicularly to
the direction of shear (even within shear surfaces). If one allows for shear in
the 3 direction (Fig. 1b) additionally to the shear in the 1 direction, the shear
direction is in the 1-3 plane (Fig. 1c); for some steady shear flow geometries
(as in helical flow), it is convenient to choose a global coordinate system with
the velocity vector in the 1-3 plane and the velocity gradient normal to the 1-3
plane. The matrix of the rate of strain tensor becomes

0 2 O
['5’] = |12 0 P23, (2.1)
0 9,3 O

and the second invariant of the rate of strain tensor defines the shear rate:

7 = (33, + 332 22

In unidirectional shear flow at constant temperature T, constant pressure
Po, and constant volume, the stress is given by the shear rate 7(¢) and the
three shear-rate-dependent viscometric functions [25, 26]:

viscosity 7(5- w, To» Po)
first normal stress coefficient ¥,(7"- > T, Po)s
second normal stress coefficient (7 , Tos Po)-

Here 7. ., symbolizes the “history of shear rates” to which the medium was
submitted up to the present time t.

Up to now, there do not seem to exist heat transfer studies on shear flow
in general; however for steady shear flow, the publications are numerous. In
Section IL.C.3 an example of heat transfer in unsteady unidirectional shear
flow will be shown.
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Steady Shear Flow and Shear Viscosity

For unsteady shear flow the shear direction and/or the value of the shear
rate change with time; the shear surfaces, however, are maintained. If the
shear direction and the shear rate are kept constant over some time (¢ =
const; $ = const), the shear stress approaches a constant value, ie., the
viscosity adopts a constant value:

"(‘?s TO: pO) = gllom "('V— .3} TO’ Po)s (23)

called the viscosity, the shear viscosity, or the apparent viscosity. The flow
becomes steady (unidirectional) shear flow. The index on T, and p, indicates
that the viscosity is defined at constant temperature and pressure.

The elastic properties of the fluid are represented in steady shear flow by
the two viscometric functions ¥, ¥,. These functions, however, do not have
any influence on heat transfer and viscous dissipation; this will be shown in
the following.

The only two terms in the system of equations (Eqgs. (1.1)—(1.3) ) that contain
the stress are ¢:Vv and V - . The rate of work by the stress a:Vv, which in
steady shear flow is dissipated completely, sometimes is called the dissipation
function. Taking the coordinate system of the shear flow, one can evaluate
the two terms [8, p. 738]; ¢:Vv is a scalar

a:Vv = 715712 + T23723, (24)

and V * ¢ is a vector with the three components

| 0 0
[V-e], = 6—161(—p + 111) + bx_z‘hz + 6_3-6?:13’

Jd 0 0
[V-e], = é}jfu + éx_z(_p + 722) + a—xs‘l’za, (2.5)

0 d 0
[V-ols = ETU + a—x;t“ + ;?x_3(—p + T33):
The stress o has been decomposed into p and t as shown in Eq. (1.4). If x,
is the shear direction (Fig. 1a), the 1 component of V <o is used for calculating
the velocity and the pressure gradient; due to the symmetry of the flow
(8t/0x, = 0); and since 1,5 = 0, the 1 component reduces to

. .Y |
V.6l = - T (2.6)

For a shear direction in the 1-3 plane (Fig. 1c), the 1 and the 3 components are
used for calculating the velocity and the pressure gradient; since t/0x, = 0
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and 0t/dx,y = 0, they reduce to

_ 0Op | 0153
[V-e], = T, + -—2 [V-e]; = s + 5}: 2.7
For calculating the velocity, the pressure gradient, and the rate of work by

the stress, one finds from Egs. (2.4), (2.6), (2.7) that one needs only the shear
components 7, ,, 7,3 of the stress matrix

Ti2 = 0, T) * 912, T23 = N1, T) * 13- (2.8)

The shear component 7,4 = sin 2¢(y¥, + ¥,)7%/2 and the normal stress
components do not contribute to the analysis. The viscosity n is the only
rheological property needed for solving heat transfer problems in unidirec-
tional steady shear flow. Thus the heat transfer analysis of Section II is not
restricted to purely viscous fluids, even if the normal stresses are not mentioned
further.

The pressure and the normal stresses can separately be determined from
the pressure gradient, the 2 component of the stress equation of motion
(which contains [V - ¢],), and the appropriate boundary conditions.

Some typical curves of viscosities referring to different temperatures are
shown in Fig. 2 [27]. At low shear rates (j < 10 s™!) one measures the vis-
cosity in Couette or in cone and plate rheometers, and at high shear rates
(# > 1s7!) one uses a capillary or slit viscometer; the temperature in the
test section is kept as uniform as possible.

108

| cone and-plate

viscometer capillary viscometer ($1.2mm)

-
o
[

—
(=1
e

viscosity n [ Ns m?]

3

1
1077 103 102 107 1 10" 107 10° 10

shear rate 7 [s7]

FIG. 2. Typical viscosity curve of molten polymer (low density polyethylene) measured by
Meissner [27].
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The pressure and temperature dependence of the viscosity usually is
described by the corresponding coefficients

1/a
“pressure coefficient o= - (—ﬁ) , 29
n\op/s.r
temperature coefficient _— (@—) (2.10)
n\oT i.p. .

(Note: Some authors define the temperature coefficient § at constant shear
stress instead of at constant shear rate.) In the expression for the viscosity,
the variables are separated. The pressure dependence is described by an
exponential function. For incorporating the temperature dependence one
may take just an exponential function

n(, T, p) = f(3, p) exp(—BT) (2.11)
or use an Arrhenius type expression
1@, T, p) = f(3, p) exp(E/RT) 2.12)

whose “activation energy” E has been reported to be a material constant
over wide temperature ranges [28, 29]. The temperature coefficient of the
viscosity at temperatures around T, can then be determined as (if one
expands (E/RT) around T,)

B(T,) = E/RT,? (2.13)

i.c.,, for constant E, the temperature coefficient is proportional T~2. The
temperature dependence of § normally is neglected in analytical studies,
which is acceptable if the deviations AT from the temperature level T, are
not too large. The relative difference of the two expressions, Egs. (2.11) and
(2.12), is

exp(l—l;: (-;- - 5,‘-;)) — exp(=B(T - To))

(An)rel = E/1 1 ]
(a7~ 7)

= 1 — exp[~BAT)’ AT, + AT)]; (214

as an example AT = 10K, B = 10"2K™1, T, = 400 K gives a relative
difference of less than 0.25%,.

At very low shear rates ( < 107'-10"3 depending on temperature,
polymer, molecular weight distribution) the viscosity adopts a value inde-
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pendent of shear rate, the zero viscosity no(T, p) (see Fig. 2). At medium and
high shear rates (y > 10), as they occur in polymer processing, the viscosity
curve 7(}) is nearly a straight line in the log-log plot. Ranges of the curve can
be approximated by a power law [30] which will be formulated as

n S\ (1/m)~ 1 :
7 (7> exp[a(p — po) — B(T — T,)]. (2.15)

The power law exponent is different for different ranges of §, T, p; for molten
polymers, the value of m is between 2 and 5. In Eq. (2.15), 7 = #(3, Po> To)
is a reference viscosity within the power law region, i.., n at the reference
shear rate 7, at the reference pressure p,, and at the reference temperature
T,. In the literature the power law model has been used very widely because
its form allows direct integration of the equation of motion for several flow
geometries to be carried out.

There are very few data on « and B available; however, «, and 8, values
of the zero viscosity #, have been published for several molten polymers.
Thus, a relation will be derived in the following between o and oy and
between f§ and f,. The viscosity curves measured at different levels of T
and p can be condensed to a single one, the so-called master curve [31,32]

n(, T, p)/no(T, p) = f(3-no(T, p))- (2.16)

In the transformation process, the viscosity curves are moved in the log-log
plot in the direction of —45°; the shape of each curve remains the same.
Therefore, the shape of the master curve is identical with the shape of the
other viscosity curves. At larger values 7,7 (>10* N m~2), ranges of the
master curve can be fitted again by the power law shown above

n(h, T, P)/no(T, p) = K(mo)*™ 1, (2.17)
and the viscosity becomes
n(, T, p) = Kng™ytm=1. (2.18)

K is a “material constant” whose dimension depends on_the value of the
power law exponent m; K will be replaced by introducing the reference
viscosity 77 of Eq. (2.15). For certain ranges, the power law exponent m is
independent of temperature and pressure (since the master curve is indepen-
dent of temperature and pressure), but it slowly increases with higher values
of ym, ranges. The pressure and temperature dependence of the viscosity n
is comprised by the pressure- and temperature-dependent zero viscosity Mo
only. The pressure coefficient a, the temperature coefficient 8, and the activa-
tion energy E of the viscosity in the power law region are then related to
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. TABLE IV

ACTIVATION ENERGY E, AND PRESSURE COEFFICIENT &, OF
THE ZERO VISCOSITY 1o

E, ‘ %o
Polymer  [10*J/gm mole]  [10"®m?N~!']  Literature
Ld.PE '5.44 — (28]
hdPE 7.08-8.99 3.25-398 [33]
PS — 4.28-9.07 [32]
PMMA 14.23-19.13 2.45-4.08 [33]

* The temperature coefficient B, of the zero viscosity around
the temperature T, is equal to Eo/RTy?, see Eq. (2.13). « and B
of the power law region can be determined from a, and f, by
dividing with m, see-Eq. (2.19).

do; Po, and E, of the zero viscosity by
« = oag/m, B =Po/m, E=Eo/m (2.19)

Table IV [28, 32, 33] lists E, and o, values of some polymers; the data can
be used to determine « and B of the power law which describes the viscosity
in the 9n, range of the application in question. Semjonow [29] collected
E, data from the literature which is quite extensive.

Due to the small values of a, the pressure dependence of the viscosity
usually can be neglected up to moderate pressure levels (<300 bar, de-
pending on the value of «) as they occur in extrusion. In injection molding
studies, however, the pressure may adopt values up to 1500 bar and the
pressure dependence should be included. In the following study, the pressure
dependence of viscosity is not taken into consideration, although the numerical
procedure would not have to be much different: it just would require one
or more iterations of the whole computation procedure, until the axial pres-
sure. profile along the channel is known.

The concept of steady shear flow is a theoretical one and it can only be
approximated. However, the rheological properties of molten polymers do
not seem to be too sensitive to some deviation from steady shear flow; and
for a large number of applications, the results from steady shear flow cal-
culations agree with flow experiments reasonably well. The shear flow might
be unsteady (8/dt # 0); during startups a constant stress is achieved only
after some time of development. But even if the flow is steady (6/0t = 0), it
still might deviate from shear. Deviations occur as slowly relaxing entrance
effects; temperature changes along stream lines, which induce changes in
shear rate, are in contradiction to “steady shear flow,” which is defined to
be isothermal and at constant shear rate; in Poiseuille flow, pressure changes
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actually influence the density, while the fluid supposedly is incompressible.
Flows of this kind are called nearly steady shear flows, where the adverb
nearly may refer to the word steady or the word shear. These limitations
of the applicability of the shear flow concept will be mentioned again, when
all the assumptions are listed together with the system of equations, see
Sections IL.B.1 and I1.C.1.

Shear Flow Geometries with Open or with Closed Stream Lines

The most important shear flow geometries are shown in Fig. 3; Table V
[34-95] lists heat transfer studies on those flow geometries. The flow due
to the relative motion of one of the surfaces is called Couette flow, while

Couette flow

T

Poiseuille _flow

1’__ {r) :
z Vzlr Y Vaiy)
es

© G)

— positive pressure gradient
——~- negative pressure gradient

FiG. 3. The main simple shear flow geometries [2]: (a) drag fiow in the narrow slit between
two parallel plates (plane Couette flow), no pressure gradient; (b) axial drag flow between two
coaxial cylinders (annular Couette flow), no pressure gradient; (c) flow through a pipe with
constant circular cross section (Poiseuille flow); (d) flow through a narrow slit (Poiseuille flow);
(e) axial flow through an annulus (Poiseuille flow); (f) helical flow (flow through an annulus
with rotating inner cylinder); (g) axial drag flow in an annulus with nonzero axial pressure
gradient; (h) drag flow in the narrow slit between two parallel plates with nonzero pressure
gradient; (i) angular drag flow in the annulus between two coaxial cylinders (circular Couette
flow), no pressure gradient; (k) flow in a cone-and-plate or in a plate-and-plate viscometer.
Geometry a will be referred to as a, if the stream lines are open, or a, if the stream lines are
closed (limiting case x — 1 of geometry i).
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the flow due to a pressure gradient is called Poiseuille flow. In the literature,
most emphasis has been laid on the fully developed temperature field in
pipe flow and in Couette flow, and on the developing temperature field in
pipes with circular cross section. Experimental studies or studies that con-
tain an experimental part are marked by an E. Poiseuille flow in a pipe
with constant but irregular cross section or Poiseuille flow in curved chan-
nels with constant cross section induce some small secondary flow in the
cross section [96]; this will be mentioned in Section III on nonviscometric
flow.

A detailed description of the historical development of shear flow analysis
can be found in the introduction of original papers on the different prob-
lems (see for instance [55] for the fully developed temperature profiles and
[77, 78] for developing temperature profiles in pipe flow). This study tries
to describe the various aspects of shear flow analysis and give credit to the
different authors in connection with the arguments in the analysis.

Stream lines are lines whose tangents are everywhere parallel to the ve-
locity vectors. In steady flow, the stream lines describe the paths of fluid
elements. The heat transfer in the various shear flow geometries depends on
whether the stream lines are open (type a,—h in Fig. 3) or closed (type a,,
i, k in Fig. 3). In steady flows with open stream lines, the temperature is
locally constant with time (97/dt = 0); for displacements along the flow
direction, however, it changes until a fully developed temperature field
(DT/Dt = 0 for T,, = const) is reached, where conduction and viscous dis-
sipation balance. In processing equipment, the fully developed temperature
field is achieved rarely since the flow channels are not long enough and the
thermal boundary conditions usually change in the flow direction. Never-
theless, the calculated fully developed temperature field is very useful as a
reference state. The degree of development can be estimated from the value
of the Graetz number. The unsteady developing temperature (6T/0t # 0,
0T/dz # 0) in flows with open stream lines has been studied very little,
possibly because the numerical or experimental techniques are very involved.

In shear flows with closed stream lines, the temperature is assumed to be
uniform along the stream lines, but locally changing with time (37/0© = 0;
dT/dt # 0) during the starting phase. The stream lines are supposed to be
circles, and © is the coordinate in the flow direction. Convective heat
transfer has no influence on the temperature field. After some developing
time, a constant temperature field is reached where viscous dissipation and
conduction balance. The degree of development can be estimated from the
value of the Fourier number.

Drag flow in a narrow slit (plane Couette flow) is introduced twice (a,
and a, in Table V). One might treat it as an entrance value problem (as in
a,) and study the axial development of the temperature field beginning from
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some inlet temperature distribution. On the other hand, one might treat
plane Couette flow as a limiting case of circular Couette flow (as in a3);
i.e., the stream lines are thought to be closed, and there are no changes in
flow direction (9/0®@ = 0). The temperature develops with time, beginning
with some initial temperature distribution. The fully developed temperature
field is the same for both cases.

A. THERMAL BOUNDARY CONDITION

The specific heat flux g at the boundary is given by the thermal conduc-
tivity kg, of the fluid together with the temperature gradient (9T/dr),, in
the fluid layer next to the wall

q= —kﬁu;dtaT/ar)w. (2.20)

The problenis of this section are described in cylindrical coordinates z,7, ©,
where r is the coordinate perpendicular to the wall.

If the thermal boundaries are not taken to be isothermal (T, # const),
the thermal development in the fluid is connected with the thermal develop-
ment in the wall. The heat flux at the boundary is determined not only by
the conduction to the outside of the channel, but also by the thermal
capacity of the wall. Both effects will be analyzed separately in the following.

1. Biot Number and Conduction to Surroundings

If the effect of energy storage in the wall is of no influence, the heat flux
at the boundary generally depends on the difference of the temperature
level of the experiment to some temperature of the surroundings. In the
analysis, the temperature gradient in the fluid layer next to the wall is taken
to be proportional to the outer temperature difference (T, — T,); T, is the
temperature of the surroundings, and T,, is the wall temperature, ie., the
temperature at the boundary between melt and containing wall. The coeffi-
cient of proportionality is the Biot number [69, 71] of equation

(@T1/0r),, = Bi(T, — T,)/h. (2.21)

Bi is already well known for describing the thermal boundary condition
during the heating or cooling of solid bodies (see for instance [97,98]). his
a characteristic length of the flow channel, ie., the gap width of a slit or
the radius of a pipe.

Equation (2.21) describes just the radial heat flux in the wall; the axial
heat conduction in the wall is neglected in the Biot number. For shear flow
applications with closed stream lines, the validity of this assumption has to
be verified in each case. However, the assumption seems to be reasonable
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for shear flow applications with open stream lines, where the axial tempera-
ture gradient is much smaller than the radial one; during thermal develop-
ment, the heat flux into the wall changes in the flow direction, but beyond
a certain distance from entrance into the channel, these changes are small
due to a small axial gradient.

The value of Bi for certain applications can be derived from a heat
balance for the wall. In some cases Bi is a function of geometry and of the
thermal conductivities only. The heat flux through the wall of a pipe, for
instance, can be determined from the inner radius r, of the pipe wall, the
wall thickness s, the thermal conductivity k., and the inner and outer -
temperatures T; and T, [98, p. 71]. '

gt T =Ts
r, In(l + s/ry)

On the other hand, the heat flux into the wall is determined by the thermal
boundary condition (Egs. (2.20) and (2.21))

(222)

0 = —kna(Gr), = ks (T = T) 23

Thus, for steady pipe flow with controlled temperature at the outer wall

(T, = T,; T, = T,), the Biot number can be calculated by equating Egs.

(2:22) and (2.23): B
_ kwall 1

PP Kpua In(1 + s/rp)’

Applying this formula to capillary viscometry (r, = 0.5 cm, s = 4.5 cm), one
finds values of Bi ~ 20. Examples for pipe flow with 1 < Bi < 100 are given
in Fig. 8 of Section IL.B.4. Similarly, the outer Biot number Bi, for annular
flow (with r, and r, as the inner and outer radius) would be

. ki 1 — 1i/r
L e 2.25
Bi, annutus Kaua IN(L + 5/r3)° (2.25)

Bi (2.24)

and some examples for pipe extrusion give 1 < Bi, < 10.

Figure 4 illustrates the geometrical meaning of Bi. The tangent to the
temperature curve T(r/h) at the wall passes through a guide point outside
the flow channel; the distance between the guide point and the wall is Bi ™!,
and the ordinate is the surrounding temperature T,. For Bi = 10, for in-
stance, the distance of the guide point from the boundary is 1/10 of the gap
width h for annular flow or 1/10 of the radius r, for pipe flow. When the
Biot number changes in flow direction, one can visualize this by the appro-

priate displacement of the guide point.
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N g S ,
dissipative | outer wall of surrounding
flow flow channel] cooling fluid

Z,>Z,

guide point

FiG. 4. Thermal boundary condition for channel flow described by the Biot number Bi and
the surrounding temperature T,, i.e., by a guide point outside the channel.

The boundary condition for the temperature field is not known in general.
If there are temperature data T,(z) available, they can be used in a numerical
program. But often one has to guess these conditions to make an estimate
of the temperature profiles possible. Most of the studies shown in Table V
prescribe idealized conditions such as:

constant wall temperature
T, = cohst or Bi; » — 0, Bi, = o0; (guide point at the wall),
constant heat flux at wall
(6T /or), = const or Bi(T, — T,,) = const,
adiabatic wall
(@T/or),, = 0 or Bi = 0; (guide point at infinity).

The use of the Biot number allows one to adopt more realistic thermal
boundary conditions, and one goal of further experimental heat transfer
studies should be the measurement of Bi in various engineering applications.

For the examples shown throughout this analysis, the boundary condition
at the wall will be described by Bi and T, independent of z (for steady flow
with open stream lines) or independent of ¢ (for flow with closed stream lines),
respectively. If the value of Bi is finite, the wall temperature T,/(z) or T(t)
changes according to the development of the temperature field, and it reaches
a constant value T, , in the fully developed temperature field.
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2. Thermal Capacity of the Wall

The Biot number is appropriate for describing heat conduction to the
surroundings. However, if the wall stores some energy during thermal de-
velopment, a different boundary condition is needed to describe this effect.

The thermal development should be calculated for the fluid and the wall
together. This has been done by Powell and Middleman [92] for plane
Couette flow with one wall having a finite mass, which absorbs part of the
heat generated by viscous dissipation. The thermal development was found
to be significantly retarded by the response of the boundary; the parameter
characterizing the retardation is the ratio of mass times heat capacity of the

solid wall and that of the fluid: (mc, ), /(MCp)puia-

In this study, however, detailed calculation of the temperature field in the
wall will be-avoided by introducing a capacitance parameter C. For flow
with closed stream lines, the wall temperature changes with time during the
thermal development. The rate of thermal energy stored in the wall is
assumed to be proportional to the time change DT, /Dt of the temperature
at the boundary. The temperature gradient in the fluid layer near the wall

becomes
oT T, — T, h DT,
Y =Bl =¥ _ C— 26
( ar >W Bl h +) aﬂmd Dt (2 )

The capacitance parameter C is dimensionless, and the ratio h/aq,, is used
in Eq. (2.26) because below the whole boundary condition will be made
dimensionless. C is determined by the geometry and by the capacitance of
both the fluid and the wall. The heat flux to the surroundings is kept propor-
tional to the outer temperature difference T, — T,,.

Assuming constant thermal properties of the wall material, the rate of
energy storage in the wall is proportional to the time change of the average
temperature of the whole wall. The time change of the average temperature
of the wall might not be proportional to the time change DT, /Dt at the
boundary. Thus, the capacitance parameter describes the effect of energy
storage in the wall only approximately. In many polymer engineering appli-
cations, however, the thermal development in the wall is much faster than
the thermal development in the fluid, and the temperature at the boundary
is representative for the whole wall. An example where uniform temperature
in the wall is assumed will be given in the following.

Example for C: The temperature of the inner cylinder of a Couette sys-
tem (geometry i in Fig. 3, r; = inner radius, r, = outer radius, h =r, — ;)
changes during the thermal development of a shear experiment. The tem-
perature of the inner cylinder is assumed to be uniform and equal to the
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temperéture at the boundary; this is justified, if the ratio of the Fourier
numbers (see Section I1.C.2) is small:

. — . 2
Lepindes (———" ") > 1. 227)
Auid i

Axial heat conduction is neglected and, of course, the Biot number is equal

to zero. The heat flux into the inner cylinder is balanced by the temperature
raise of the inner cylinder:

2ar(0T/0r)y keua = nriz(pc)cylinder aT, /ot (2.28)

By comparing Eq. (2.28) with Eq. (2.26) one finds the capacitance parameter
for the Couette system:

U (pC) linder
= . 2.29
¢ 2ry — 1) (POnuia ( )

The influence of C on the thermal development will be shown in Figs. 23
and 24 of Section IL.C.3. _

For most of the steady heat transfer problems with open streamlines, the
walls are stationary or just rotating about the z axis. The capacitance of
the wall has no influence on the temperature (DT, /Dt = 0). An exception
would be the inner boundary of axial Couette flow (geometry b or g of
Fig. 3) as occurs in the wire coating die. The corresponding thermal bound-

ary condition is
oT . T, — T, v,h 0T,
-\ =Bi =— ¥4+ C, >~ .
<6r >w Bl.‘ h + YAqua 02 (2:30)

v, is the axial velocity of the wall (inner cylinder).

For the example of a wire coating process, a heat balance for the inner
cylinder (wire) leads to the same formula for the capacitance parameter as
for the Couette system above, Eq. (2.29). The assumptions made were uni-
form temperature in cross section of wire and no axial conduction in the
wire. The Biot number for the wire is zero.

The geometrical meaning of the boundary condition with capacity and
conduction to the surroundings is shown in Fig. 5. The guide point is not
at a constant position (as for flow with DT, /Dt = 0; see Fig. 4), but moves
during the thermal development along T, = const. For the fully developed
temperature field, the wall temperature does not change any more; the
capacitance of the wall is of no influence, and the guide point is, as in
Fig. 4, at a distance Bi~! from the boundary.

An adiabatic or perfectly insulating wall would be a wall without thermal
capacitance (or with an appropriate heat source of its own); the corre-
sponding Biot number and the capacitance parameter are both equal to zero.
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dissipative outer wall of | surrounding
flow flow channel cooling fluid

1

>4,

TIE)

13

rlh

displacement of guide point
during thermal development

F1G. 5. Thermal boundary condition for a wall with thermal capacitance. During the thermal
development, the guide point of the tangent on the temperature field moves toward the position
Bi~., T,).

B. STEADY SHEAR FLOW WITH OPEN STREAM LINES

Steady shear flow with open stream lines could be analyzed now by
going into each of the shear flow geometries a,~h in Fig. 3. Instead, it will
be demonstrated here that the helical flow geometry is representative since
all the other geometries are limiting cases of helical flow.

In helical flow, the fluid flows through an annulus between two con-
centric cylinders (Fig. 6). Axially, the fluid flows due to a pressure gradient
and/or due to the axial movement of the inner (or outer) cylinder. In the
circumferential direction, the fluid flows due to the rotation of the inner
cylinder. Fluid elements move on helical paths; the angle of the helices

flow due to pressure gradient flow due to rotation of
and due to axial movement inner cylinder,
/of igr}er cylin}j/er
r A 2 f
l’ \
L’ Vzi
/] path of
/ z fluid particle
/
/
/
\//

F1G. 6. Helical flow geometry.
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depends on the ratio of the axial to the circumferential velocity component,
which both depend on the radial position of the fluid element.
The annular geometry is characterized by the ratio of the radii

K = ri/ra_ (231)

The limiting cases are the pipe (x = 0) and the plane slit (x — 1). The posi-
tion in the annulus is given by dimensionless coordinates:
r—r

radially: Y = — 0<Y<I; (2.32)

V4

TIG2

The value of Z indicates, as will be shown in the following, to what degree
the temperature field is developed along the channel. The Graetz number
Gz will be defined in Eq. (2.56).

axially: zZ 0<Z<Gz . (2.33)

1. Assumptions and System of Equations

The equations of change, Egs. (1.1)~(1.3), have to be simplified before they
can be solved. First the assumptions will be listed, then they will be com-
mented upon:

incompressible fluid with constant thermal conductivity and diffusivity;
steady laminar flow (0/0t = 0);

rotational symmetry (6/0© = 0);

velocity gradients

0o, dve o, @, b 0o O (),
0z’ 9z’ 9z’ or’ r or’ or\r)’
no slip at walls;
inertia negligible; kinematically developed velocity at z = 0;
gravity negligible;
viscosity measured at constant temperatures and constant shear rates
gives applicable local values of the viscosity during temperature changes
and during small changes in shear rate; rheologically developed stress at
z=0;
convective heat transfer much larger than conduction in flow direction;
heat transport toward the walls by conduction only.

Throughout this section the molten polymer is taken to have constant den-
sity (p/p = 1; e = 0), constant thermal conductivity (k/k = 1),and constant
thermal diffusivity (a/a = 1). In the general system of equations for helical
flow, however, these properties have been kept as variables, and one might
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evaluate them in the numerical program using p(p, T), k(p, T), and a(p, T)
data from measurements on the fluid at rest.

The density is assumed to be constant since in actual experiments (with
T # const, p # const) density changes are delayed, ie., the changes are
overestimated if one applies p data of equilibrium thermodynamics. For
this reason, the effect of expansion cooling is not considered in all but one
example. For the one exception, the supposed expansion cooling term
(containing ¢T) of Eq. (1.8) is kept in brackets in the energy equation; the
effect of expansion cooling is estimated in an example of pipe flow; see
Fig. 13 with € # 0.

During the axial development of the temperature field, the temperature-
dependent viscosity is changing and causes the shape of the velocity profiles
to change accordingly. For continuity reasons, the changes of the axial
velocity require some radial flow. Using the equation of continuity, Eq. (1.1),
the radial velocity components have been estimated from the change of the
axial velocity component and have been found to be small (o] <1072 ).
Throughout Section IL.B, the influence of the radial velocity components on
the radial heat transfer, on dissipation, and on the viscosity will therefore
be neglected.

Due to rotational symmetry and due to dv,/0r and r d(ve/r)/Or being the
largest gradients, the isotropic pressure is taken to be a function of z only:

p = p(2).

The shear rate becomes

F] 2 ;] 3 271/2
R ET e

which is the root of the second invariant of the rate of strain tensor.

In most applications, molten polymers do not slip at the wall, and in all
the published heat transfer studies this assumption has been made. Polymeric
materials such as high density polyethylene, polyvinylchloride, or poly-
butadiene, however, seem to slip in certain ranges of the normal stress and
shear stress at the wall [99, 100]; the velocity field is then drastically changed
and additional frictional heating occurs on the sliding surfaces.

The velocity at the entrance (z = 0) is assumed to be fully developed;
i.e., inertial effects are neglected, and the stress is assumed to be governed
by the three viscometric functions (of steady unidirectional shear flow) at
the local shear rate and the local temperature. For low Reynolds number
pipe flow of inelastic liquids, the kinematic development is practically com-
pleted after a length of I = 0.1r, Re [101]. Neglecting inertia might there-
fore be justified for entrance flow of molten polymers, which is low Reynolds
number flow.
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The rheological properties of the polymer entering the annulus are deter-
mined by a flow and temperature history, which obviously is different from
that for steady shear flow. Judging from the measured pressure profiles
along a slit die, steady shear flow might be reached practically at I/h = 20--30
(depending on geometry, flow rate, and polymer melt). Therefore, the heat
transfer study of this section may give unrealistic results for flow in short
annuli and short circular holes, which rheologlcally should be treated as an
entrance flow problem.

The equations for conservation of mass, momentum, and energy in helical
flow are

19
0=—5 (o) + z(pv,),
0 3 i} Vg
0- a[ (7))
dp 2 dv,
0= -2+ ;E(m -a;), (235)

T 8 [ oT ap 3 0o\ - (dv,\?
pcv,a—z rar(rka)+ Tev,a |+r1[(r57) + =) |

The average axial velocity is.

_ 2 rs P .
v, = r—.—z—-—r,z " Ev,r dr. (2.36)

The initial and the boundary conditions are

T(r, 0) = T(r)

v,(r,0) =0
Sr<r,
ve(r, 0) = ve (1)
v,(r, 0) = v, () . (2.37)
oT(r;, 2) Bi T(r z)
or - ' h
aT(rl. Z) = Bi‘ Ts.a . T(rn, Z)
or h L 0<z<l

vr(ri:, Z) = vr(ra, Z) = 0
ve(ri; 2) = ve; Ve(te, 2) = 0

vz(ri. Z) = z,i; vz(ra, Z) = vz.a
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The meanings of Bi and T, have been described already in Section ILA on
the thermal boundary condition (Bi; < 0; Bi, > 0). The capacitance param-
eter C of Eq. (2.30) has been omitted here since the temperatures are assumed
to be steady and since the walls are stationary for most shear flow applications
with open stream lines. ’

For the dimensionless presentation of the equations, a reference velocity
7 can be defined by vector addition of the mean axial velocity 7, and the
mean circumferential velocity v ;/2:

7 = [3.° + (ve,/2)"]'". (2.38)
The reference length is taken to be the gap width
h=r,—r;. (2.39)

For pipe flow the reference length becomes equal to the pipe radius (h = r,).
Using the reference velocity 7 and the reference length h, one can define a
reference shear rate
y =7/h (2.40)
and a reference viscosity
7 = 1@, To)- (2.41)

T, is a characteristic temperature level of the experiment, for instance the
average melt temperature at the inlet (T, = T.,). Flow problems with viscous
dissipation do not have a characteristic temperature difference (AT),,; to
which temperature changes can be related. Some authors relate the tempera-
ture to the temperature level T ; this, however, seems to be rather arbitrary
since T/T, might assume different values in otherwise similar processes
(e.g., at different temperature levels TO and T,’). The value of T/T, addition-
ally depends on the choice of temperature scale. Therefore, the temperature
coefficient of the most temperature-sensitive property, the viscosity, has
been used to define the dimensionless temperature: (AT), e = 7.
The dimensionless variables are:

velocity (Vs Ve, V2) = (0,/5, v/B, 1,/9), (2.42)
h2

pressure gradient ' = %%, (2.43)
h

shear stress Pgz = 1., s (2.44)

" v

Pre = T,0 —, (2.45)

no

radial position R=rir,=01-xr/h; k< R<1,
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n ,)', (1/m)-1
viscosity 7 (;) exp(—B(T — Ty)),
(2.47)
temperature 9 = B(T — To) = (T — To)(AT),-
(2.48)
The dimensionless form of the equations becomes
o (p r. @ (p )\
0= 2z <5RVR) + zcza_z‘<5 Vz>, (2.49)
_ 5 3’1 5 Ve
0= [R TR (2.50)
_ -PF 0 n oVy
0”(1—x)2+RaR[Rr,a ] @31)
P08 _ o 8 (k@) o b
5z = 1~ RaR g Rog) + Na TP

+ Na%(l - x)Z[ R 5‘3}—{ %)2 + (%%’)2]. (252

The dimensionless average axial velocity is
2 1p
R f S ViR dR, (2.53)
and the initial and boundary conditions are
S(R,0) = B(T(r) — To) = 3R)
Va(R,0) =0

_ k<R<],
Vo(R,0) = Vg (R) = vg,(r)/?
VAR, 0) = Vz (R) = v, (/D
39(, Z) _ . 98, — %(x, 2) ) .
R ' 1-x (2.54)
091, Z) _ p. Bua — 9(1, Z)
R T 1-«x

3 0<Z <Gz '
Ve, Z) = Vp(1,Z) = 0

Volk, Z) = ve;/7; Vo(1,Z) = 0
VZ(K, Z) = Uz,i/ﬁ; Vz(la Z) = vz,n/.l_)
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In the expansion cooling term of the energy equation, the absolute tempera-
ture T is not replaced by the dimensionless temperature 9 since the dimen-
sionless product €T can be considered as constant within the accuracy of
the calculations.

The system of equations is formulated in cylindrical coordinates, and
R = r/r, is kept as a dimensionless coordinate, even if h =r, —r; is the
reference length and not r,. The results are presented using the dimension-
less coordinate Y. If one wants to avoid this inconsistency, the substitution

R=Y(1 —-x) +x 0R = 0Y(1 — x)

eliminates R from the equations; with this substitution the equations look
unnecessarily complicated and therefore both coordinates are kept: R in the
equations and Y in the graphical presentation of the results. For pipe flow,
R and Y are identical.

2. Dimensionless Parameters

The problem as stated in Egs. (2.49)—(2.54) is completely determined by
six dimensionless parameters (Na, Gz, x, m, V,, L) together with the boundary
conditions. A general description of the dimensionless parameters has been
given by Pearson [3]. If the pressure dependence of the viscosity or non-
constant thermal properties would be included, the number of parameters
would increase accordingly.

The equation of motion and the equation of energy, Egs. (2.35), are coupled
by the temperature-dependent viscosity. The extent of the coupling increases
with the value of the Nahme number [44]:

Na = po2n/k (2.55)

which compares the dissipation term with the conduction term in the
equation of energy. For values of Na greater than 0.1-0.5 (depending on
geometry and thermal boundary conditions), the. viscous dissipation leads
to significant viscosity changes, ie., changes reflected in the T and v fields.
For smaller values of Na, isothermal conditions can be achieved practically;
in this case, the equation of motion can be integrated independently of the
energy equation.

In some studies the Brinkman number [62] Br = 7°7/kT, has been used
instead of the Nahme number. However, Br contains the arbitrary tempera-
ture level T, (since no characteristic temperature difference is available) and
may, therefore, have very different values for similar processes. The value of
Br does not give any information on the extent of the coupling between the
equation of motion and the energy equation. (Note that the Nahme number
sometimes is called the Griffith number after Griffith [102], who used the
same dimensionless group in one of the later applications.)
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The energy equation contains a convection, a conduction, and a dissipa-
tion term. By comparing the convection and the conduction terms one
arrives at the Graetz number [103]

Gz = v.h¥/al (2.56)

which has been included in the dimensionless form of the z coordinate. The
Graetz number can be understood to be the ratio of the time required for
heat conduction from the center of the channel to the wall and the average
residence time in the channel [75]. A large value of Gz means that heat
convection in flow direction is more important than conduction toward the
walls, Gz = 100, for instance, is a common value for extruder dies. (Note
that some authors define the Graetz number Gz - 7.)

The Gz number has been defined with the average axial velocity and the
length of the annulus, instead of the reference velocity 7 and some mean
path length T for the fluid elements in the annular section. One might, how-
ever, define Tto be T = [9/5, which would result in a Graetz number Gz =
oh? /al equal to the one defined in Eq. (2.56).

The value of the dimensionless average axial velocity

g B[ (2YT™ o<rm<t 2.57
Z—%_Ii +(27)-z):| ) sta ()

describes whether the flow tends to be closer to axial flow in an annulus
(¥, = 1) or closer to circular Couette flow (¥, = 0).
The dimensionless length of the annulus is

L = l/h = lfr, — 1) (2.58)

Another dimensionless parameter originates from the shear dependence of
the viscosity: the power law exponent m in Eq. (2.47).

3. Universal Numerical Shear Flow Program

The system of equations is solved by an iterative implicit method (6/0Z
described by a backward difference; 9/0R and 8%/0R? described by center
differences; gradients at a boundary are calculated from a parabola through
three points), similar to the one used in an earlier study on helical flow [85].
A network is superimposed on the annulus. Difference equations are then
derived for each node point, which fulfill the condition of conservations of
mass, momentum, and energy. The method described in the following was
found to converge rapidly; for example, a run with 60 radial and 250 axial
steps requires a computation time of about 30 s.

The solution procedure is an iterative one, in which the coupled equations
are linearized and solved separately. The nonlinear terms and the coupling
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conditions have to be satisfied by alternating improvements on the velocity
and on the temperature field. The iteration is terminated when the rela-
tive change in successive steps becomes smaller than one thousandth
(Arel < 10—3)'

The flow chart in Fig. 7 describes the structure of the program. The velocity
field at the entrance, which is assumed to be fully developed kinematically,
is calculated by taking, as a first guess, a Newtonian viscosity according to
the entrance temperature field. The shear dependence of viscosity is included
then by iteration, using the improved values of the velocity field. After about
6—20 iterations, the velocities reach values that are practically constant.

geometry, material and process data; boundary conditions
Bi, . Biy, hi. Tea. V; . ¥z : entrance conditions Tir);
2:0; Iyw=1; Vo= Vg =

dimensionless parameters Na , Gz, V.x,4R = const.
logarithmic steps sizes 47, number of steps n, ;n=0

_¢
ﬁ:n¢1 ;2=z‘AiJ
=

Fiscosity nl{$(R.2), 7(R.Z))

no

. flow in capillary:
P1Z).%(RZ1.VIRZ) | P(z). (R, 2),Bi=0
— e — — e

= LV . draP’ <107

it Z=4Z,and $ = 3(R.0) then ¥,. V;
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I 0 —_—————
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output
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dev™ conditions ; L,=0
n=ne

no

end

FiG. 7. Flow chart of universal shear flow program.
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The axial velocity V; and the pressure gradient P’ are calculated from the
Z component of the equation of motion together with the integral of the
flow rate (Egs. (2.51) and (2.53)). The circular flow Vg is evaluated from the
© component of the equation of motion (Eq. (2.50)). The R component V
of the velocity supposedly does not influence the viscosity and the convec-
tion; thus it is calculated separately at the end of each step using the equation
of continuity (a numerical method that allows for positive or negative radial
flow contributions has been suggested by Gosman et al. [104]).

The entrance conditions are then stored, and the fully developed tempera-
ture field is calculated so as to be available as a reference state for the
developing temperature field. In the fully developed temperature field, the
convective term of the energy equation is zero. The iteration starts out with
the viscosities and velocities at the entrance. They give a first approximation
of the dissipation term and of the fully developed temperature field. Using
this solution, one gets improved values of the viscosities and the velocities
by iteration. These values of the viscosities and velocities lead to the second
approximation of the fully developed temperature field, and so on. After
satisfying the condition of (A, < 1073), the values of 8, — 9(x, 0)) and
of (8, — (1, o0)) are stored as reference values for the developing tempera-
ture field. Then the program goes back to the entrance temperature field
and starts calculating the developing temperature, velocity, shear stress, and
pressure. If both walls are adiabatic (Bi; = Bi, = 0), there does not exist a
fully developed temperature field; the program then starts calculating the
developing temperatures immediately.

For flow in a capillary (x = 0), the velocity and the temperature have a
zero gradient at R = 0.

The power law model fails in describing the viscosity at low shear rates,
and for computational purposes at least one has to set an upper limiting
value of the viscosity (this has been done in the numerical program of this
study). For more accurate calculations, one has to approximate ranges of
the viscosity curve by several power law and temperature coefficients. Also
a viscosity table could be used instead.

The numerical program has been checked with analytical solutions of the
fully developed temperature and velocity field in plane Couette flow and
with isothermal flow in a pipe and in an annulus [105].

Besides helical flow with its steady, but developing temperature field, the
system of equations, Egs. (2.35)—(2.37), describes the flow geometries of all
other steady shear flows with open stream lines (type a,—h in Table V).
Therefore, it actually is possible to use one numerical program for all these
flow cases. The appropriate values of the ratio of the radii «, the axial velocity
of the inner cylinder V,(k, Z), and the average axial velocity ¥, are listed in
Table VI.
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TABLE VI

SHEAR FLOW GEOMETRIES AS LIMITING CAsEs OF HELICAL FLow*

Flow geometry as

described in Fig. 3 K Vi(x, Z) Vy
a, 0999 2 1
b 0 <k <1 determined by 1

iteration for P = 0

c 0 — 1
d 0.999 0 1
e 0< k<1 0 1
f 0<k<l 0 0<V <1
g 0<k<l finite 1
h 0.999 finite 1
a, 0.999 0 0
i 0<k<l 0 0

@ Listing of the corresponding geometry (described with x) and kinematics
(described with the velocity of the inner cylinder V,(x,Z) and the average
axial velocity F,). Geometries a, —h are with open, and geometries a, and i
with closed stream lines.

Due to the parabolical character of the solution procedure for the equation
of energy, the helical flow program can be applied only to flows with non-
negative velocity components. Thus, axial drag flow in an annulus with
nonzero axial pressure gradient (type g) and drag flow in a narrow slit
between two parallel plates with nonzero pressure gradient (type h) can be
analyzed only up to moderate positive pressure gradients. A solution proce-
dure that allows for back flow is described in the literature [104], but it
does not seem to have been applied to these types of flow.

4. Calculated Results

There is a large variety of heat transfer problems solvable with the universal
shear flow program. Some examples follow, mainly concerning the thermal
boundary conditions (Biot number) and the kinematics for various shear
flow geometries. Similar examples of helical flow or annular flow calculations
have already been published, however, with idealized thermal boundary
conditions [85]. In all the examples of this section, the entrance temperature
(at Z = 0) is taken to be 3.(R) = 0.

The thermal boundary conditions influence the developing temperatures
and velocities to a large extent. In analytical studies generally, idealized
conditions are assumed, i.e., isothermal or adiabatical wall; in real flow



