Viscous DisSIPATION IN FLOWING MOLTEN POLYMERS 237

TABLE VI

SueaR FLOW GEOMETRIES AS LIMITING Cases OF HELICAL Frow*

Flow geometry as ‘

described in Fig. 3 K Vyix, Z) vy
a, 0.999 2 1
b 0<x <1 determined by 1

iteration for P = 0

c 0 — 1
d 0999 0 1
€ 0<k<1 0 1
f 0<k<l 0 0< V<l
g 0<k<l1 finite 1
h 0.999 i finite 1
a, 0999 0 0
i 0<k<tl 0 0

* Listing of the corresponding geometry (described with x) and kinematics
(described with the velocity of the inner cylinder Vy(x,Z) and the average
axial velocity 7). Geometries a, -h are with open, and geometries a, and i
with closed stream lines.

Due to the parabolical character of the solution procedure for the equation
of energy, the helical flow program can be applied only to flows with non-
negative velocity components. Thus, axial drag flow in an annulus with
nonzero axial pressure gradient (type g) and drag flow in a narrow slit
between two parallel plates with nonzero pressure gradient (type h) can be
analyzed only up to moderate positive pressure gradients. A solution proce-
dure that allows for back flow is described in the literature [104], but it
does not seem to have been applied to these types of flow.

4. Calculated Results

There is a large variety of heat transfer problems solvable with the universal
shear flow program. Some examples follow, mainly concerning the thermal
boundary conditions (Biot number) and the kinematics for various shear
flow geometries. Similar examples of helical flow or annular flow calculations
have already been published, however, with idealized thermal boundary
conditions [85]. In ail the examples of this section, the entrance temperature
(at Z = 0) is taken to be 9.(R) = 0.

The thermal boundary conditions influence the developing temperatures
and velocities to a large extent. In analytical studies generally, idealized
conditions are assumed, ie., isothermal or adiabatical wall; in real flow
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FiG. 8. Influence of the thermal boundary condition, described by a guide point.outside the
channel given by Bi and 9, = 0, on the developing temperature ficld in pipe flow. Bi = 100 is
close to the isothermal wall condition, while Bi = 1 causes large changes of the wall temperature.
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siﬁiations the thermal ‘b'qundary condition is somewhere between the two.
The strength of the Biqt number in describing a more realistic kind of
bbiﬁndary condition will be demonstrated on pipe flow: the fluid supposedly
enters the pipe at a constant temperature equal to the temperature of the
surroundings (3, = 9 = 0).

Due to viscous dissipation, the temperatures increase in flow direction
(Fig. 8). For Bi = 100, the wall temperature stays nearly constdnt, while for
Bi = 10and Bi = 1, the wall temperatures already incréasé in edtly develop-
ment. The fully developed temperature at Bi = 10 has a value between that
at Bi = 100 and Bi = 1. At large Bi the temperature iii the layer near the
wall is kept low; the viscosity and hence the viscous dissipation is large, and
a large temperature gradient is needed to coriduct away dll newly dissipated
energy. At small Bi the wall temperatures have to rise significantly before the
heat flux at the wall can balance dissipation; the temperature gradient can
still be relatively small since the viscosity and herice the viscous dissipation
become small at high temperatures. At large Bi the téfnperatures are high
because viscous dissipation is most pronounced. At small Bi the temperatures
are high because the conduction toward the surrounditigs tequires large wall
temperatures. For intermediate Bi, the fully developéd temperature has a
minimum. :

The corresponding pressure gradient P'(Z) décreases due to the decrease
of the temperature dependent viscosity (Fig: 9): Thé decredse of P'(Z) below
its value at the entrance P(0) is most p’roﬁéunced 4t small values of the
Biot number, where the wall temperatures inicrease thé most.

The temperature gradient at the wall is defined with the Biot number and
an outer temperature difference 9, = 9, (see Eq: (2.54)), where 3.(2) itself
depends, besides the other parameters; on Bi. The dimensioiiless temperature

10

PZ)
P10}

05

0 i } —,
10°* 10° 107 10° zZ 10°

FiG. 9. Pressure gradient in pipe flow at different thermal boundary conditions; decrease due
to the thermal development described in the previous figure. The pressure gradient for isothermal
pipe flow can be calculated analytically: P(0) = — 2(m + 3™
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gradient [03(R, Z)/dR],, increases with Z till it reaches its fully developed
value at about Z = 1 (see Fig. 8).

a. Nusselt Number. For engineering calculations, the specific heat flux g
often is described by means of the Nusselt number [106]

h oT
"= & (‘aT> (259)

and a characteristic temperature difference (AT),.,. The product Nu - k/h
sometimes is called the heat transfer coefficient. The value of the Nusselt
number depends much on the choice of the temperature difference (AT), ;.
For flow without significant viscous dissipation, one takes it to be the local
average temperature difference (T,, — T(Z)) or the average temperature
change (T(Z) — T(0)) in the flow direction. The average temperature of the
melt is chosen to be the “cup mixing temperature”

T(Z) = ﬁ f ' T(R, Z)V,(R, Z)R dR (2.60)

which would be the temperature of the homogeneous fluid after mixing
(constant specific heat per volume assumed).

The Nusselt number in its usual definition is not adequate for describing the
wall heat flux in flows with significant viscous dissipation. One disadvantage
of the use of Nu is the fact that both Nu(Z) and T(Z) have to be known to
calculate the wall heat flux g(Z); the main disadvantage, however, is that in
Nu an attempt is made to describe two fairly unrelated quantities as a
function of each other, the temperature gradient at the wall and the average
temperature difference (T,(Z) — T(Z)). This will be explained in the fol-
lowing, using pipe flow as an example.

Figure 10 shows developing temperature profiles in pipe flow, on the
left-hand side with negligible viscous dissipation (Na = 0.001) and on the
right-hand side with significant viscous dissipation (Na = 1). The wall
temperature is above the entrance temperature (9, = 0; §; = 0.1); developing
temperatures at constant wall temperature (Bi = oo) are drawn as solid lines,
while for a thermal boundary condition with Bi = 10 dashed lines are used.
For flow without significant dissipation (Na = 0.001), the temperature of the
fluid gradually approaches the wall temperature; the temperature gradient
at the wall (shown in Fig. 11) decreases monotonically till it becomes zero.
However, if there is significant viscous dissipation (Na = 1), the temperature
in the layer next to the wall increases drastically even before the average
temperature is changed much. The temperature gradient changes its sign;
the fluid heats the wall, even if the average fluid temperature is below the
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FiG. 10. Calculated temperatures in pipe flow with wall temperatures above the entrance
temperature. Comparison of the thermal development without (Na = 0.001) and with(Na = 1)
significant viscous dissipation. The wall temperature is taken to be constant (Bi = o) or
described by a guide point with Bi = 10.

wall temperature. This corresponds to a negative Nusselt number or a negative
heat transfer coefficient, which is an unrealistic result.
The dimensionless average temperature difference (Fig. 12)

3(Z) - 9,(2) = B(T(Z) — Tu(2)) = BAT (2.61)

is negative at the entrance of the pipe (prescribed initial condition) and at
least for Bi = oo, it increases monotonically with Z. For Na = 0.001, the
fluid approaches the wall temperature (8, = 9,); for Na = 1, the average
temperature difference goes through zero and approaches a constant value
greater than zero. The Nusselt number Nu(Z), which conventionally is
defined with this temperature difference, has a singularity when the average
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FiG. 11. Wall temperature gradients for pipe flow with viscous dissipation (Na = 1) and
without (Na = 0.001). The wall temperature is above the entrance temperature.
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FiG. 12. Development of the difference between the average temperature and the wall
temperature in pipe flow with viscous dissipation (Na = 1) and without (Na = 0.001); the .
wall temperature is above the entrance temperature.
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temperature difference AT is equal to zero [69, 76, 82]. The specific heat flux
at the wall obviously is finite (see the wall temperature gradient in Fig. 11).
This seeming singularity (at Z of AT = 0) suggests that the usual choice of
the reference temperature difference AT cannot be applied meaningfully to
flow problems with viscous dissipation [69]. The same argument is valid if,
instead of a constant wall temperature, a guide point is chosen outside the
channel, see Figs. 1012 with Bi = 10.

In the definition of the Nahme number (Eq. (2.55)), B! is taken to be a
characteristic temperature difference, and for defining a Nusselt number for
flow with viscous dissipation one similarly may take ~

(AT)ref = ﬁ_ 1‘ (262)

Introducing this reference temperature difference into Eq. (2.59), the Nusselt
number becomes

Nu = hB(3T/0r),, = (88/0Y),, (2.63)

and it then is identical with the temperature gradient at the wall. Equation (2.63)
seems to be an adequate definition of Nu for flow with viscous dissipation.
The relation between Nu and Bi is given together with Eq. (2.54). For fluids
with practically temperature-independent properties, an adequate definition
of the Nusselt number for dissipative flow can be made by means of the
“recovery temperature” [98, p. 417].

b. Expansion Cooling. In steady flow of compressible fluids with nonzero
pressure gradient, the density will change in the flow direction; the equation
of energy, Eq. (1.7), contains a term that describes the cooling or heating due
to those density changes :

T Dp/Dt,

where €T can be determined from Eq. (1.10). In the example of Fig. 13 the
influence of expansion cooling is shown on developing temperature profiles
in pipe flow (with 9, = 9,, = 0). Values of T = 0, 0.1, 0.2, 0.3 have been
used since values of this magnitude can be evaluated from equilibrium
‘thermodynamic data of molten polymers at rest. The applicability of equilib-
‘'rium data to regions of rapid pressure changes is still an open question.

¢. Thermal Development. For constant inlet temperature equal to the
temperature of the surroundings, the average temperature increases during
the development of the temperature field with increasing Z. The temperature
is fully developed at Z = 0.5-2. Although the absolute value of the average
temperature depends on the power law exponent m, or Na, and on Bi, the
relative development is nearly the same for the different examples of pipe
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F1G. 13. Calculated temperature profiles in a pipe with constant wall temperature equal to
the entrance temperature. The magnitude of ¢T determines the amount of cooling due to
expansion with decreasing pressure p; T is the absolute temperature.

flow (Fig. 14). In annular flow, however, the relative thermal development
depends on the thermal boundary conditions (Fig. 15); if the dissipated heat
can be conducted to both walls (Bi, = —10%; Bi, = 10%), the developing
length is much smaller than if one wall is nearly adiabatical (Bi; = —1;
Bi, = 10°). For Newtonian fluids (m = 1), the channel length required for
thermal development is shorter than for fluids with shear dependent viscosity
(m = 3; m = 5, for instance).

d. Zero Pressure Gradient or Zero Wall Shear Stress. The versatility of the
program will be demonstrated on some velocity profiles of isothermal flow
in an annulus, including the limiting cases of a plane slit («x — 1) and pipe
(x = 0). Annular flow with zero velocity gradient at the inner wall (which
also means zero shear stress at the inner wall) can be achieved with the
appropriate pressure gradient and the appropriate velocity V() at the inner
wall (Fig. 16). An application of this type of velocity field could be die flow
in the wire coating process: operating at low shear stress at the surface of
the wire prevents ruptures of the wire. If the pressure gradient in the annulus
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FiG. 14. Development of the average temperature in pipe flow at different Bi and m; (a) at
Na = 1 and (b)at Na = 5.
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FiG. 16. Calculated velocities and pressure gradients for isothermal axial flow in an annulus
witli zero shear stress at inner wall. Parameter is the ratio of radii «.

is prescribed to be zero (P’ = 0), the axial velocity of the inner cylinder Vz(x)
has to be the larger, the smaller x is (Fig. 17); for a plane slit (x — 1), the
velocity gradient is constant and the velocity of the moving wall is twice the
average velocity, obviously. Taking different values V() in an annulus of
x = 0.4 (Fig. 18), the pressure gradient P’ adopts positive or negative values.
A zero shear stress at the inner wall or a zero pressure gradient at isothermal
flow does not mean that this condition applies to the whole flow channel:
due to the thermal development the velocity changes, and accordingly a
nonzero shear stress at the inner wall or a nonzero pressure gradient arises.

5. Experimental Studies

The main motivations for undertaking experimental studies on heat
transfer in steady shear flow with open stream lines seem to be:

investigating the validity of the assumptions made in the analytical studies;
information on the thermal boundary conditions, ie., values of Bi in
different applications.

The flow geometries chosen for experiments were pipe flow and helical flow
(see Table V). The measurable quantities were the flow rate, the pressure
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Fig. 17. Calculated isothermal velocity profiles in an annulus at zero pressure gradient.
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values V,, the pressure gradient P/ adopts positive or negative values.
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profile, the radial temperature distribution at the inlet and at the exit, the
thermal boundary conditions; additionally, for helical flow one could mea-
sure the torque and the angular velocity of the cylinders. As input data for
the numerical program one needs the flow rate (or a pressure gradient), the
properties of the polymer (viscosity n(j, T), thermal diffusivity a(T), thermal
conductivity k(T), density p(p, T)), the melt temperature at the inlet T(r),
and two boundary conditions each for the temperature and the velocity
fields. The other data can be used for a check on the validity of the numerical
solution. Several of the published experimental studies do not specify the
data needed for comparing with analytical solutions.

While wall temperatures can be measured quite accurately, the temperature
measurements in the flowing molten polymer always contain some systematic
errors. A thermocouple mounted on the tip of a probe is placed into the melt
stream. The probe is supposed to adopt the melt temperature as closely as
possible (zero temperature gradient in the polymer layer next to the probe).
Apart from distorting the velocity profile by introducing the probe into the
flow, two effects are influencing the temperature measurement: heat conduc-
tion along the probe, which requires a heat flux and a temperature gradient
in the polymer layer next to the wall of the probe, and viscous dissipation in
the polymer around the probe.

The error due to conduction along the probe can be excluded by setting
the base temperature, where the probe is mounted to the wall of the channel,
equal to the temperature at the tip of the probe [107, 108]. The error due to
dissipation cannot be avoided, but it can be kept small by measuring the
melt temperature at positions of very low velocities, i.e., after slowing down
the flow in a wide channel and then calculating back to the corresponding
temperatures at the exit of the narrow channel by means of the stream func-
tion [91,109]. Van Leeuwen [110] studied the applicability of different probe
geometries and found that a probe that is directed upstream paraliel to the
streamlines of the undisturbed flow gives the most accurate temperature data
of the melt. ) _

Gerrard et al. [67] pumped a Newtonian fluid (oil) through a narrow
capillary (r, = 0.425 mm and 0.208 mm, 33 < lfr, < 459). They measured
the pressure drop, the flow rate, the inlet temperature, the wall temperatures,
and the radial temperature distribution at the exit. The calculated values of
the pressure drop and the temperature at the exit reportedly agree with the
measured values within 5%. The viscosity was taken to be a function of tem-
perature; expansion cooling was neglected in the analysis.

Mennig [72] extruded polymer melt (low density polyethylene) through a
capillary (r, = 3.5 mm, Ifr, = 225.7) at adiabatic wall conditions. Measured
quantities were the temperature in the center of the entering polymer stream,
the wall temperature distribution, the radial temperature distribution at the
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exit, and the total pressure drop. The calculated values of the wall tempera-
tures and of the radial temperature distribution exceeded the measured
values by about 5%. The viscosity has been taken to be a function of shear
rate and of temperature; expansion cooling has been included in the analysis.
For capillary flow, Daryanani et al. [75] measured the average heat flux
through the wall using an clectrical compensation method. From the total
pressure drop and the heat flux through the wall, they calculated the average
temperature increase between entrance and exit of the capillary. '
Winter [91] extruded a polymer melt (low density polyethylene) through an
annulus (x = 0.955 and 0.972) with rotating inner cylinder. The measured
quantities were the mass flow rate, the pressure distribution, the rotational
speed of the inner cylinder, the radial temperature distribution at the entrance
and at the exit, four temperatures each at the inner and at the outer wall. As
shown in Fig. 19 the developing temperatures have been calculated beginning
with the measured temperature distribution at the inlet. For the exit tem-
perature distribution, measured and calculated values agreedupto Y =~ 0.75
within 5% of the temperature increase (at the outer wall, 0.75 < Y < 1 the
temperature distribution has not been desribed sufficiently with only four
temperature readings). The measured and calculated pressure gradients
agree within 8%, Expansion cooling has been neglected in the analysis.
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FIG. 19. Comparison of measured and calculated temperature profiles in helical flow [91].
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C. SHEAR FLow WITH CLOSED STREAM LINES

The shear flow geometries with closed stream lines studied most widely
are circular Couette flow and its limiting case, ie, plane. Couette flow
(x = 1). The fluid is sheared in the annular gap between two concentric
cylinders in relative rotation to each other (Fig. 20). The axial velocity
component v, is zero. At time t = 0, the Couette system is started from rest
at isothermal conditions with a step in shear rate ((t < 0) = 0and (0 < t) =
o = const); alternatively the system might be started with a step in shear
stress.

Three types of development are superimposed on each other, each of them
on a different time scale:

Kinematic development: The fluid has to be accelerated until it reaches a
velocity and a shear rate independent of time. The kinetic development can
be calculated for a Newtonian fluid; a practically constant velocity field is
reached after [111]

t = ph*/16n (2.64)

(h is the gap width, n the constant Newtonian viscosity, and p the density).
For viscoelastic liquids an estimate on the duration of kinematic develop-

FiG. 20. Flow geometry of circular Couette flow.
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ment can be made from the loss and the storage modulesG":and G' measured
in periodic shear experiments at frequency o = 1/t [112]

t» h(p/G)Y*  or  t>» h(p/G)'? (2.65)

For startup experiments on polymer melts, the kinematic development
generally is assumed to be completed before the rheological and the thermal
development has actually started.

Rheological development: The viscosity n(j, T, t) needs some time of de-
formation at constant shear rate, until it adopts a constant value.

Thermal development: Due to viscous dissipation beginning at time t = 0,
the temperatures in the gap rise until the temperature gradients toward the
walls are large enough to conduct away all the newly dissipated energy.
Convection does not influence the temperature field because the temperatures
along stream lines are constant.

1. Assumptions and System of Equations

The assumptions corresponding to-the ones listed in Section ILB.1 are:

incompressible fluid with constant thermal conductivity and diffusivity;

no change in z direction;

rotational symmetry (6/00 = 0);

velocity vg # 0; v, = v, = 0;

no slip at walls;

inertia negligible; kinematically developed velocity at ¢t = 0;

gravity negligible;

viscosity measured at constant temperatures and constant shear rate gives
applicable instantaneous values of the viscosity during temperature changes
and during small changes in shear rate; rheologically developed stress at
t=0.

. The stress equation of motion and the energy equation become

_0f , Ove
0= ar(r "5 r), (2.66)
T 9 (0T 3 v)?

The reference values are chosen to be the same as in the helical flow analysis:

T=vgy2; h=r,—r; F=7h F=nG To
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The dimensionless variables are

velocity Vo = ve/7,
radial position R=rr,=(01—-xr/h, kSRS
y=1"" o0o<v<l,
r‘ - ri
shear stress Pre = Tr0 _ﬁ—ﬁ’
temperature 8 =pB(T — Ty)
The dimensionless form of the system of equation reads
. i} 3 n 6 Vg
= 2R3l 8 2.68
0 6R(R 7ORR) . (268)

ey _ 8 (pk3S nfr oY ’ 2.69
SeaFe ~ (LT X [RaR Riar)* Nez( R ) | @9
The initial conditions are

3(R,0) = 0, Vo(R, 0) = Va,o(R) (2.70)

where Vg o(R) is the kinematically developed velocity at the initial tempera-
ture. The boundary conditions are

09(, FO) _ p. 8 = 90k Fo) G 89(x, Fo))
R ' 1-x 1 -« dFo
09(1, Fo) . 9. — 9(1,Fo) C, 09(1,Fo)
- 5,8 - > = Fo. (2.
oR Bl 1 -« 1 -« dFo 0 =Fo. (271)
Volx, Fo) = 2
Vo(1,Fo) =0

The thermal boundary condition is an energy balance of the inner and of the

outer wall. The heat flux into the wall is equal to the heat flux out of the wall

minus the change of energy stored in the wall. The boundary condition has

already been described in Section ILA. It is repeated here to show the com-
plete mathematical problem at once (Bi; < 0;Bi,,C;, C, > 0).

2. Dimensionless Parameters

For a description of most of the dimensionless parameters, the reader
is referred to Section IL.B.2. The Nahme number, Eq. (2.55), compares the
dissipation term and the conduction term of the equation of energy. The
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ratio of radii x shows the influence of curvature, and m describes the shear
thinning effect of the viscosity.

Instead of the Graetz number one introduces as a dimensionless variable
the Fourier number

Fo = ta/h? 2.72)

which can be understood as the ratio of the current time of the experiment
and the time needed for heat conduction from the center of the channel to the
wall. At Fo = 1-4, depending on the thermal boundary conditions, the
thermal development is completed. The Fourier number corresponds to Z in
the heat transfer problem with open stream lines, where one might define
an average residence time? = z/7,:

oz _, za _E_
Z—7Gz —hzﬁz_hz—Fo' (2.73)

3. Solution Procedure and Calculated Results

The ® component of the equation of motion is the same for annular shear
flow with open and with closed stream lines. The kinematically developed
velocity Ve(Y, 0) at isothermal conditions can be calculated with the existing
numerical program of Section ILB without any changes. The same is true
for the thermally developed case at large times at constant thermal boundary
conditions since the conduction and the convection terms are identical in
both types of flow. If one replaces Z by Fo and sets V(Y) = ¥, = 1073
(which is an arbitrary small value to avoid singularities in the program),
even the developing velocity Vg(Y, Fo), temperature 9(Y, Fo), and shear
stress Pre(Y, Fo) can formally be taken from the existing program without
further considerations; see Table VI. The capacitance parameter, however,
has to be included in the thermal boundary condition.

The solution procedure is basically the same for steady shear flow with
open stream lines and for unsteady shear flow with closed stream lines
(Couette system), and it would have been possible to treat it in one special
section in the beginning. For two reasons, however, this has not been done
in this study: (1) shear flow with open stream lines is much more important
for polymer processing; (2) the frequent change from Z to Fo would make
the explanations difficult to comprehend. The solution procedure in Section
I1.B is meant to be an example, and it will not be described repeatedly for the
corresponding problem in this section.

The geometry of a cone-and-plate or a plate-and-plate viscometer cannot
be described by the existing shear flow program. Turian and Bird [52-54]
estimated the temperature effects in cone-and-plate systems by applying the
maximal gap width (at the outer radius) to a plane Couette system with
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isothermal walls. The radial heat conduction, which might diminish the
effect of dissipation, is neglected.

The development of the temperatures in circular Couette flow is a function
of the dimensionless parameters Na, Fo, k, m, and of the thermal boundary
conditions. In Figs. 21 and 22, the influence of the geometry on the develop-
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Fic. 21. Comparison of developing temperatures for plane and for circular Couette flow.

The outer wall is taken to be isothermal; the inner wall is close to isothermal (Bi; = —100)
and close to adiabatical (Bi; = —1).Na = 1;m = 2;C; = 0.

relative average temperature 3fFoi/3,

dimensionless time Fo

FiG. 22. Development of the average temperature in plane and in circular Couette flow. The
solid lines correspond to the development with both walls close to isothermal (Bi; = —100),
and for the dashed lines the inner wall has been taken to be close to adiabatical (B, = —1).
Na=1,m=2,C =0.
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ing temperature 9(Y, Fo) will be demonstrated for plane Couette flow
(x ~ 1) and for circular Couette flow with x = 0.5, both with constant
temperature of the surroundings equal to the initial temperature (3(Y, 0) =
8,; = 3,, = 0); the outer wall is taken to be isothermal (Bi, = o) and the
inner wall is taken to be close to isothermal (Bi; = —100) and close to
adiabatic (Bi; = —1), respectively. The thermal capacitance of the wall is
neglected (C; = 0). For the plane slit the shear rate and hence the viscous
dissipation are nearly uniform. The temperatures rise uniformly until the
conduction toward the walls takes more and more heat out of the channel.
When the temperature gradients are large enough to conduct away all the
newly dissipated energy, the fully developed temperature field is reach. If the
inner wall is nearly adiabatical (Bi; = — 1), the temperature gradient has to
adopt larger values since nearly all the dissipated energy has to be conducted
to the other wall on the outside. The corresponding temperatures for circular
Couette flow (k = 0.5) are asymmetrical through the geometry of the system,
additionally to the asymmetry of the thermal boundary condition. The shear
rate and the viscous dissipation is much larger at the inner wall than at the
outer one. The comparison of the average temperature J(Fo) in Fig. 22
shows that the development is much faster if both walls are cooled instead
of one wall being nearly adiabatical (Bi; = —1).

The thermal development depends on the capacitance of the walls. In an
example (Fig. 23) the outer wall of a circular Couette system is taken to be
isothermal (9(1, Fo) = 0); the boundary condition at the inner wall is de-
scribed by Bi; = —1, 9,; = 0, and different values of the capacitance param-
eter C;. The thermal development is delayed more, the larger the capacitance
of the wall is taken to be.

¢
iy
% i
5
k] Na=1, x=05 C =0
g m=2 i o =01
[ 3 =0 Bi =0
& a ¢+ Pla
os} -
g C, =0 Cc,s10
3
@
2
£
e
0 - .
107 102 10" 1 10

Fourier number Fo

FiG. 23. Thermal development of circular Couette flow depending on the capacitance
parameter C; at the inner wall; the outer wall is taken to be at constant temperature. Na = I;
m=29,,=0;9,, =0;Bi; = —1
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F1G. 24. Developing temperature in circular Couette flow for C; = 0 and C; = 0.1. The
temperature of the outer wall is taken to be constant and equal to the initial temperature.
x=05Na=1;m=2;Bi = -1

The development of the temperature near the wall is determined by the
value of C. For the example in Fig. 24 with C; = 0.1, the guide point initially
is very close to the boundary. As the inner wall heats up, the guide point
moves away from the boundary until the temperature of both the fluid and
the wall reaches its full development. Dissipation and conduction balance
and the temperature gradient at the inner wall becomes independent of C;.

a. Unsteady Plane Shear Flow with Closed Stream Lines. Analytical studies
that include the time dependence of the viscosity 7(j,, T, t) do not seem to
be available. Several authors calculated the developing temperature field in
plane Couette flow of fluids with a viscosity independent of time:

Gruntfest [89]: nT) = ﬂ(To)e'm__ To)
Krekel [86]: G, T) = isinh;x(_?_)
’ y o)
Powell and Middleman {92]: n = const,,
~ . WG To) [P\
Winter {88]: T)= ———————— = .
[88] 10 T) = T To)(?)

Practical applications of their studies are the Couette rheometer [88, 89, 92]
and a shearing device for breaking up particles suspended in a fluid [86].
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For the following example the assumption about the fully developed
stress at ¢t = 0 will be lifted. A Couette system is kept at rest, and the stress
in the system is zero. At time ¢ = 0 a shear experiment with constant shear
rate is started. The shear stress 7,,(¢) is found experimentally (see for instance
[113]) to be governed by a time-dependent viscosity that increases gradually,
goes through a maximum, and approaches a constant value. If these viscosity
data are available, they might be used in the numerical program. For de-
monstrational purposes, the viscosity curve is approximated by

n@, T, 1) = [AGHHI™ e BTTOUL — e™ )1 + ce™°"), (2.74)
Eq. (2.47)

which qualitatively fits the measured curve shapes. The maximum viscosity
is chosen to be three times the viscosity of steady shear flow; the time of the
maximum is chosen to be Fo = 0.1, i.e., at about one-tenth of the thermal
development time.

The time-dependent viscosity contains an elastic contribution, which,
however, is not specified unless one uses a complete rheological constitutive
equation. In the calculation of the dissipated energy, the elastic part of the
work of the stress is taken to be negligible compared to the viscous part.

The stress growth curve as chosen in Eq. (2.74) is reproduced by the nu-
merical program with Na = 0.001 (dashed lines in Fig. 25). If viscous dissipa-
tionis important (Na = 1, for instance) the stress reaches an earlier maximum
at a lower value; the general shape of the curve is not changed through the

F,0 tonal Iy
’ AL

2 ! AN n= ﬂ(—) e
3 / AN ; La

£ ’:' N - n=1n (—71)"' -7 14 ¢ g7¢F0)
- .

i NN with c,= 79964 ; c,= 9.8930
2“1y \

ot \ Na = 0,001

\, 3

o |' \\ \\/

2 f N . -Na=
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g | \\ Tte—e

£ 114 ==
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| Na = 0,001

N

° { Na=1
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c 0 . . 4 4 . ' r

0 01 02 03 0.4 05 06 0.7 0.8 09 1.0

dimensionless time Fo ( Fourier number )

FiG. 25. Thermal influence calculated for the startup experiment of plane Couette flow with
time dependent viscosity as described in Eq. (2.74). The walls are taken to be at constant tem-

perature equal to the initial temperature; m = 2.5.
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effect of dissipation, and rheological and thermal effects seem undistinguish-
able in stress growth experiments. For comparison, the developing shear
stress curves for (rheologically) time-independent viscosity (as described in
Eq. (2.47)) are calculated and drawn as solid lines in Fig. 25.

b. Fully Developed Temperature Field. The fully developed case has drawn
much attention (see Table V), which is due to a double-valued solution, found
in 1940 by Nahme [44] for plane Couette flow of Newtonian fluids.

The shear stress in fully developed circular Couette flow (including plane
Couette flow as a limiting case) cannot exceed a certain value, even if the
shear rate is very large; for shear stresses below the maximum possible value,
there are always two feasible shear rates 7, a small one at high viscosity and
low temperature and a large one at low viscosity and high temperatures.
Changes from one shear rate to the corresponding one require large tempera-
ture changes, and due to the heat capacity of the system together with the
small thermal conductivity of the polymer, oscillations between the two
states do not seem possible.

For demonstrating the double-valued solution, Nahme [44] used a dimen-
sionless shear stress 7* and a dimensionless shear rate y*, whose definition
can be extended to power law fluids:

* = Na'/! *™Pgg(R, 00)/Pre(R, 0), (2.75)
j* = Nama+m, (2.76)

Pre(R, c0) and Pge(R, 0) are the dimensionless shear stress (see Eq. (2.45))
of the fully developed temperature field and of the isothermal case, respec-
tively; the ratio of the two is independent of R. The dimensionless shear stress

wn
T

~
T

dimensionless shear rate 7*
N L)
x
n
[=)
wn

-

% 0z o: 06 08

dimi. schear stress T*

FIG. 26. Shear rate §* as a function of shear stress t* (both defined in Egs. (2.76) and (2.75))
of the fully developed temperature field; the parameter is the geometry.
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FiG. 27. Average temperature 3, of the fully developed temperature field for different
geometries of circular Couette flow. Both walls are at constant temperature (3, = 0); m = 2.

Pre(R, ) is a monotonically descreasing function of Na, and it cannot be
used by itself to demonstrate the double-valued solution. As an example, in
Figs. 26 and 27 the double-valued solution $*(z*) and the corresponding
average temperature J,(t*) of the fully developed temperature field are
shown for circular Couette flow at ¥ = 0.5and x =~ 1. Each shear rate * has
only one corresponding temperature Je-

4. Experimental Studies

The gap width of Couette systems is fairly small; and it is very difficult,
if not impossible, to measure the temperature distribution by conventional
means. The wall temperatures, however, can be measured quite accurately;
other quantities measured are the torque on the system, the rotational speed
of the cylinders, and the geometry. The double-valuedness of the shear rate
seems to have been verified by Sukanek and Laurence [55] only.

For viscosity measurements, the shear rate is prescribed and the average
velocity in plane Couette flow is taken to be 7 = $h/2. The experiment should
be performed at conditions close to isothermal, which means that the Nahme
number should be as small as possible: )

2— =2 —
Na = ﬂﬁk T_ %ﬁ K. @.77)

The Nahme number is proportional to the square of the gap width, i.e., the
Couette system should have a very narrow gap. Manrique and Porter [57]
built a Couette rheometer with a gap of 5 x 10~ 3 mm; reportedly they could
eliminate the influence of viscous dissipation up to shear rates of 3 x 108s 1.
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II1. Elongational Flow; Shear Flow and Elongational Flow
' Superimposed (Nonviscometric Flow)

The deformation during flow can be understood as a superposition of
shear, elongation, and compression. If elongational components and density
changes are negligible, the flow is shear flow, and the corresponding heat
transfer problems can be analyzed as shown before. However, there are many
engineering applications with a flow geometry different from shear flow;
how the corresponding heat transfer problems are usually treated will be
mentioned briefly. For a more detailed description, the reader will be referred
to several examples in the literature.

Other than for shear flow, there is no accepted rheological constitutive
equation available for studying heat transfer. The proposed integral and
differential constitutive equations are mostly tested in shear experiments at
constant temperature, which might not be significant for nonviscometric flow
during temperature changes. The main reason for not applying constitutive
equations of elastic liquids is the fact that they require a detailed knowledge
of the kinematics before the stress can be determined. But for other than
Couette flow experiments, the kinematics of nonviscometric flows is not
known in advance; it has to be calculated simultaneously with the stress.
Presently a large emphasis of rheology is on solving nonviscometric flow
problems at constant temperature. Rheological analysis is not advanced
enough to incorporate temperature changes, and the present method of
solution for nonviscometric engineering problems is practically identical
with the one for steady shear flow, without care of the rheological differences.

Elongational Flow

Up to now, analytical studies on nonisothermal extensional flow have
been done by means of a temperature dependent Newtonian viscosity,
Eq. (1.13), and constant density. The studies are on melt spinning of fibers
(see, for instance, [ 114, 115]) and on film blowing (see for instance [116,117]).
The measured stress and velocity indicate that the work of the stress ¢:Vv
is very small (at least for film blowing [117]), and the heat transfer seems to
be determined by convection with the moving film or thread and by con-
duction to the cooling medium. ‘

Shear Flow gnd‘EIongational Flow Superimposed

;/.In{n/any different channel flows, as they occur in polymer processing, the
rate of strain contains elongational components. The fluid elements are
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Velrz)

Fic. 28. Examples of converging and diverging flow: (a)} Couette flow into a converging slit,
which induces a pressure gradient for continuity reasons; (b) Couette flow in a converging
annulus; (c) Poiseuille flow into a converging pipe or a converging slit; (d) radial flow in the
gap between two parallel plates.

stretched while they are accelerated or slowed down along their paths.
Examples (Fig. 28) are Couette flow into a converging slit or annulus, flow
in a tapered tube, and radial flow between parallel plates. For describing the
stress, one commonly uses the Strokes equation, Eq. (1.13), together with
some average viscosity, or one takes the equation of the generalized New-
tonian liquid, Eq. (1.14). The results of this kind of calculation seems to give
relatively good estimates on temperature changes and viscous dissipation.
Examples are heat transfer in screw extruders (see for instance [3, 102,
118-122]), in calendering [123], during mold filling [124-129], and in melt
solidification during flow [127-129].

If the deviations from shear flow are small, the stress might still be defined
by the viscometric functions. An example of nearly viscometric flow is
Poiseuille flow in a pipe with constant but irregular cross section or Poiseuille
flow in curved channels with constant cross section; the induced secondary
flow in the cross section supports heat transfer toward the walls. The secon-
dary flow, however, is very small. Whereas the improvement on the heat
transfer for polymer solutions might be up to 307, [130], for molten polymers
(low density polyethylene in curved pipe) the influence of the secondary flow
on the heat transfer was too small to be detectable with temperature probes
in the melt [131].

Another example of nearly shear flow occurs in channels near a wall, even
if the bulk of the fluid is mainly-subjected to deformations other than shear
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[132]. For steady flow, the stress at the wall is described by the three viscome-
tric functions and the wall shear rate, which of course can be determined
only from the whole flow analysis including the nonviscometric part.

IV. Summary

Heat transfer in flowing molten polymers is largely influenced by rheology,
i.e,, by the rheological properties of the polymer and by the flow geometry.
The rheology of steady shear flow is well understood, and hence the corre-
sponding heat transfer problems can be treated most completely. However,
heat transfer studies in flow geometries other than shear are, due to the
present lack of an appropriate constitutive equation, only possible in very
simplified form.

The most important shear flow geometries are shown to be limiting cases
of helical flow, and the corresponding heat transfer problems can be solved
with one numerical program. Two groups of heat transfer problems are
analyzed in the study: heat transfer in steady shear flow with open stream
lines (represented by helical flow with 9/dt = 0) and the corresponding
unsteady heat transfer problem with closed stream lines (represented by
helical flow with 3/0z = 0). The problem is completely determined by six
dimensionsless parameters—the Nahme number; the Graetz number (or the
Fourier number, respectively); the ratio of the radii of the annulus; the relative
average axial velocity; the power law exponent of the viscosity; and the ratio
of length to gap width—together with the boundary conditions.

The commonly used idealized boundary conditions are replaced by the
Biot number for describing the heat conduction to the surroundings and by
the capacity parameter for describing the thermal capacity of the wall during
temperature changes with time. The conventional definition of the Nusselt
number is not applicable to heat transfer problems with significant viscous
dissipation, and a new definition has to be introduced.

The shear dependence of the viscosity is described by a power law and the
temperature dependence by an exponential function. The temperature co-
efficient of the power law region is shown to be directly related to the activa-
tion energy of the zero viscosity.
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R =rfr,

Tl

NOMENCLATURE

thermal diffusivity [m?/s]

Biot number [-], see Egs.
(2.21) and (2.26)

specific heat capacity at con-
stant pressure or at con-
stant density [J/kg K]

capacitance parameter of

wall [-], see Eqgs. (2.26)
and (2.30)

internal energy [J/kg]

activation energy [J/g-mole]

Fourier number, at/h? [-]

Graetz number, 7,h%/al [-]

r, —r, = gapwidth[m];h =
r, for circular across sec-
tion

thermal conductivity [J/m s
K]

length of the slot

power law exponent, see Eq.
2.47)

torque {mN]

Nahme number, 7287/k [-],
see Eq. (2.55)

Nusselt number [-], see Eq.
(2.63)

pressure [N/m?], see Eq.
(1.13)

dimensionless pressure gra-
dient, see Eq. (2.43)

dimensionless shear stress
components, sec Eq. (2.44)
and (245)

specific heat flux at bound-
ary [J/m? s]

radial coordinate (note: in
Eqs. (19) and (2.12), R is
the gas law constant)

outer and inner radius of
annulus {m]

2, Z = z{(l G2)
o

B

«6 A" xQ®

1s 'pz

wall thickness [m]

time [s]

temperature [K]

average temperature [K], see
Eq. (2.60)

velocity components [m/s]

angular velocity at inner wall
[m/s]

average velocity in z direc-
tion [m/s]

reference velocity [m/s], see
Eq. (2.38)

dimensionless velocity com-
ponents vﬁ/‘ﬁ' v,/U. "l/3

coordinate in r direction, see
Eq.(2.32)

axial coordinate

pressure coefficient of viscos-
ity [m?/N1, n™'@n/0p); 4

temperature coefficient of
viscosity [K™'], n~"(n/
aT),,

rate of strain tensor [s™!]

shear rate in simple shear
flow {s~']

unit tensor

coefficient of thermal ex-

—p~@p/0T),

dimensionless temperature,
BT — To)

azimuth coordinate

ratio of radii, r;/r,

density [kg/m*]

stress tensor [N/m?]

extra stress tensor [N/m?]

shear angle (see Fig. 1)

first and second normal
stress function in shear
flow



264 Horst H. WINTER
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0 initial state, reference state, i,a inner or outer boundary
or related to the zero-vis- rR 2,20 coordinates
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© fully developed state w wall, boundary of channel
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