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Viscous Dissipation Term in
Energy Equations
H. H. Winter

University of Massachusetts
Amherst, Massachusetts.

OBJECTIVES

After completing this module, the student should

be able to:

1. Calculate the rate of viscous dissipation for a
given flow.

2. Calculate the rate of viscous dissipation in a
macroscopic energy balance.

3. Calculate dissipation in a slip layer.

4. Use the dissipation function as a criterion to
distinguish between a viscous and an elastic
material.

5. Calculate dimensionless groups to estimate
the magnitude of viscous dissipation.

PREREQUISITE MATHEMATICAL SKILLS
1. First year college calculus.

PREREQUISITE ENGINEERING AND
SCIENCE SKILLS

1. First year college physics.

2. Macroscopic balances.

INTRODUCTION

Deformation and flow of materials require energy.
This mechanical energy is dissipated, i.e. during the flow
it is converted into internal energy (heat) of the material.
This phenomenon can be demonstrated by performing a
simple experiment with a metal paper clip: bend the clip
wide open and close it repeatedly until the clip breaks.
Now, touch the metal near the region of the break and
feel the high temperature. The mechanical energy for
bending the metal has been converted into internal en-
ergy. The increase of internal energy expresses itself in a
temperature rise. .

Viscous dissipation is of interest for many applications:
significant temperature rises are observed in polymer
processing flows such as injection molding or extrusion
at high rates. Aerodynamic heating in the thin boundary
layer around high speed aircraft raises the temperature of
the skin. In a completely different application, the dissi-
pation function is used to define the viscosity of dilute
suspensions (Einstein, 1906, 1911): Viscous dissipation
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for a fluid with suspended particles is equated to the vis-
cous dissipation in a pure Newtonian fluid, both being in
the same flow (same macroscopic velocity gradient).

RATE OF VISCOUS DISSIPATION

The rate at which work is being done on a volume ele-
ment for changing its volume and its shape is defined as
(for derivation, see Appendix)

6:Vv=—pV +v+7:VVy 1)
rate of rate of work
work for for shape
volume  change at
change constant volume
The stress,
o=-pl+7 2)
with

1
= ——trace o
P==3

is divided into the pressure, p, and the extra stress, 7.
V-v and Vv are the divergence of the velocity vector and
the velocity gradient. The second term in Equation 1 is_
called the *‘dissipation function,”’

¢=1:Vv '(3)

since most (not necessarily all) of the work is irreversibly
converted into heat. The dissipation function for flows of
Newtonian fluids is given in component form; see Table
1.

VISCOUS DISSIPATION IN PIPE FLOW

The steady flow in a pipe of constant cross section (ra-
dius R) will be used in the following for explaining vis-
cous dissipation in bulk and at a slip boundary.

Macroscopic Balance

Flow of a fluid in a pipe requires mechanical energy
which is supplied by a pump-or by the hydrostatic pres-
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Table 1. Components of the dissipation function of a Newtonian fluid with viscosity u.
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sure of a reservoir (potential energy). Consider a pipe
segment as shown in Figure 1 and a control volume be-
tween cross-sections 1 and 2.

The rate of work done for flow of a fluid through a
pipe is calculated by integrating the rate of work per unit
surface area, n-o-v, over the entire surface of the con-
trol volume. See also the Appendix Equation 46. Note
that the surface along the pipe wall does not contribute,
since its velocity is zero. The work on cross-sections 1
and 2 can be calculated by assuming uniform pressures
) and p, and by neglecting the small influence of the
extra stress 7. The rate of work done on the volume of
fluid becomes

R R
E= S Dvi2wr dr- S Dav227r dr @)
0 0

The volume flow rate is the same in both cross sections
(assuming constant density)

R R
Q=215 v,rdr:ZrS vor dr ®)
0 0
where p = const. This gives a total rate of work
E=Q(p1—-p2) 6
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Figure 1. Straight pipe section of length L, diameter D. The con-
trol volume includes a thin layer of the stationary wall material.

for deforming, for accelerating, and for elevating the
fluid. In a horizontal pipe of uniform cross-section (Fig-
ure 1), the mechanical energy for the pipe flow is com-
pletely dissipated, since the kinetic energy (no accelera-
tion) and the potential energy (no change in altitude) of
the fluid do not change between cross-sections 1 and 2.
Note that the macroscopic energy balance gives the total
dissipated energy (‘‘friction loss’’), however, no informa-
tion is given on whether the dissipation is uniform
throughout the volume or whether there are regions of
large viscous dissipation and other regions of negligible
dissipation. An interesting situation arises when the. fluid
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slips at the wall (see Example 3): one part of the energy
for flow through the pipe is dissipated at the slip surface
and the remaining part is dissipated in the volume of the
deforming fluid.

Example 1: Pipe Flow in Polymer Processing

Polymer melt is forced through a pipe of L = 0.04 m
and D = 0.002 m (runner channel to fill the mold of in-
jection molding machine). A pressure drop p; — p, = 8
x 107 Pa was typically found to give a volume flow rate
Q = 6 X 10~ m%s. Calculate the average temperature
increase in the polymer between inlet and outlet. Assume
adiabatic walls, neghglble density changes, and a steady
temperature field in the pipe.

Typical values for the physical properties of a polymer
are:

density p=10? kg/m?
heat capacity c=1.4x103J kg=! K-!
The dissipated energy is calculated from Equation 6:

E=Q(p;—p2)=(6x10"%) (8x10")=4.8x 102 J/s

Q)
For a steady temperature field in a pipe with adiabatic
walls, the entire energy is transported convectively with
the fluid. The convective energy flow through a pipe
cross section is

oc(T)Q=21 S: pcT(P(r)r dr ®)

The difference between energy convection into the pipe
and out of the plpe is equal to the generation of internal
energy due to viscous dissipation

peQ(Ty~(T)p=0(p1~p2) &)

The average adiabatic temperature increase between inlet
and outlet is calculated as
b~
pc
8x 107
103 (1.4x 103)

A(T)=(T)~(TY=

=57K (10)

Local temperatures might by far exceed this average
value. An average temperature increase of 57 K is very
large. Some of the assumptions in the beginning of this
example will have to be reconsidered: the thermal and
the rheological properties can be expected to change sig-
nificantly between entrance and exit; the high tempera-
tures of the fluid give rise to a substantial radial tempera-
ture gradient, i.e. the heat flux into the wall cannot be
neglected anymore.

Example 2: Friction Loss in Pipe Flow of Water

30.5
0.05 m) at an average velocity of 6.2 m/s. The

Water at 20°C is flowing through a pipe (L =
m,D =
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pressure drop was found to be Ap = 2.34 x 10° Pa.
Calculate the temperature increase between inlet and out-
let by assuming no conduction through the wall. The rel-
evant properties are:

density p=1000 kg m~3
heat capacity ¢,=4.2x 103 J kg=! K-!

The average temperature increase for adiabatic pipe flow
is calculated as

Ap  2.34x10°

AMT)y="C=—
() pc, 107 (4.2x10%)

=5.6x10-2K (11)

Viscous dissipation does not significantly alter the tem-
perature of the water. However, it is still important,
since it determines the power requirement of a pipe line
system, i.e. viscous dissipation determines the size of the
pumps for a pipe system and the energy costs of pump-
ing.

Example 3: Pipe Flow With Slip at Wall

Consider a fluid which flows through a straight pipe
section as shown in Figure 1. The fluid is found to slip at
the wall at a velocity vg. Examples of slipping fluids are
highly filled suspensions, linear polyethylene, polybuta-
diene, and polyvinylchloride in the molten state. Deter-
mine how much energy is dissipated in the slip region.

A control volume for a macroscopic energy balance is
chosen around the fluid volume in the pipe section. The
main point is that the control volume does not contain a
layer of stationary wall material, but that the outer sur-
face moves with the finite slip velocity vg. The rate of
work done on the control volume of fluid is again calcu-
lated by integrating the rate of work per unit surface,
n-o-v, over the entire surface.

Ei=0(pi-p)+ |, (0.¥)s7D dz a2)

The first part is the rate of work done for flow through
the pipe (see Equation 6) and the second part is (minus)
the rate of work for slip along the pipe wall. The shear
stress at the wall can be expressed in terms of the axial
pressure gradient in the pipe,

Rap

(Urz)R—E P (13)

In case of a uniform slip velocity vg and a uniform pres-
sure gradient, dp/dz = (p; — p1)/L, the integral can be

simplified. The rate of work for slip along the wall be-
comes

L
Ey==xD | (0)r dz=(pi-p)uenD¥4  (14)

The rate of work for deforming the fluid (subscript d) in
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the flow through the pipe remains as

E;=Q(p;-p,)-E;

UR
=(p1-p2)Q {1——} 1s
© (v

(v) is the average velocity. The limiting case of plug
flow, vg = (v), obviously requires no energy for the de-
formation. The other limiting case of no slip, vz < (v),
requires all the energy to be dissipated in the deforming
fluid.

DISTRIBUTION OF THE DISSIPATION FUNCTION

Most flows are inhomogeneous, i.e. the stress and the
rate of deformation are functions of position. Again,
steady pipe flow is used for demonstrating inhomoge-
neity.

In pipe flow, the viscous dissipation is not uniform in
the cross-section (see Table 1)

o= Trz'Y.rz (1 6)

The shear stress is given by the stress équation of mo-
tion,

rdp
r="_‘ 17
=3 4z an

where

/4 .
~—=axial pressure gradient
e p g

The shear rate is equal to the radial velocity gradient

. _avz (18
Yrz2= ar )
which depends on the type of fluid:
Newtonian fluid: 5,y = — 4 2! r a9
ian fluid: v,,= — —
8/ R R )
N 1 (Uz> r\n
Power law fluid: v,,= - —+3 —_ (20)
n R \R

The power law viscosity is here defined by
7(y)=n°|y/y°|"!

in
Tr=7(Y) Yrz 21

with a reference viscosity of n° = 5(y°) at a reference
shear rate ° in the shear thinning region of the viscosity
plot.

Now, let us determine the distribution of the dissipa-
tion function for the power law fluid, keeping in mind
that the solution will include the Newtonian fluid as a
special case (with n = 1). Introducing Equations 20 and
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Figure 2. Developing temperature profiles in a pipe with isother-
mal wall (74). Parameters are the Nahme number, Na, and the
dimensionless distance from the entrance Z = k/(pc, (v)R?).
The viscosity is described by a power law with n = 0.4,

21 into the dissipation function ¢, Equation 16, gives

1 n+l ((yY\2 / r\1+n
oo (1 (L) ()™ e

where

ror (92) 2ot

R

The dissipation function is zero at the center line and has
its maximum value at the wall. .

Developing temperature fields in pipe flow demon-
strates the non-uniformity of the viscous dissipation; see
Figure 2. Large radial temperature differences are gener-
ated in a fluid which started out being of uniform temper-
ature. These radial temperature differences give rise to
conduction of heat towards the wall. A fully developed
temperature is reached when the heat flow into the wall
balances the viscous heat generation. A method of calcu-
lating developing temperatures in many different shear
flow geometries and a review of the literature are given
by Winter (15).

DIMENSIONLESS GROUPS

The calculation of temperature fields requires the solu-
tion of the equation of energy. The equation of energy is
conveniently rewritten in dimensionless form. Order of
magnitude arguments allow the elimination of small
terms, as compared to the important terms. This proce-
dure also applies for the viscous dissipation term in the
energy equation. One has to define a dimensionless
group, the generation number Ng,, which indicates the
importance of viscous dissipation as compared to convec-
tion, conduction, and compression.

The generation number Ng, can be defined with the
equation of energy in a most simple form:

DT 1
—=kVIT+— gy : v 23
pCp D LR (23)

The fluid is assumed to be purely viscous and of constant
viscosity. The thermal properties p, c,, k are assumed to
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be constant [an equivalent discussion for the compressible
fluid can be found in Schlichting (/3)]. The stress in the
viscous dissipation term is already replaced by

=7y with y=Vv+(Vv)7 (24)

The viscosity has to be specified as a function of temper-
ature and deformation rate. D/Dt is a substantial time
derivative.

——=—4v - VT (25)

The equation of energy is made dimensionless by scal-
ing it with the factor H%/kAT?°. Equation 23 becomes

pc, VH H DT*
k L Dt*

Graetz number, Ng,
1 Vg

=V*T* 4
2kAT?®

Generation number, Ng, (26)

o

7*Y* 1 %)

The scaling factors,

V= reference velocity
H = characteristic length in direction of velocity gra-
dient (pipe radius or slit width, for instance)
L = characteristic length in flow direction (pipe
length in pipe flow)
AT?® = reference temperature difference
T, = reference temperature
n° = reference viscosity, n(V/H, T,)
make the variables dimensionless:
T = (T — T,)/AT®
t* = t(L/V
V¥ = HV
=y
Yt =qvH/V
The definition of the generation number is
Fs
4 @)
T kATO

and its relation to the equation of energy is known. A
large generation number implies that viscous dissipation
cannot be neglected in comparison with heat conduction.
Note that the product n*y*:y* might locally adopt very
large values (3 1). Therefore, the viscous dissipation
might locally influence the temperature even if the gener-
ation number is smaller than one. A safe value for ne-
glecting the effects of viscous dissipation seems to be
Ng, € 0.1.

The generation number has been defined several ways
and accordingly, has different names in the literature.
This module will discuss two of the most common cases.
The other dimensionless group, the Graetz number, com-
pares the magnitude of convection and conduction. It will
not be discussed here.
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Flow With a Transverse Temperature Difference

There are many flows with a given temperature differ-
ence, AT s, between the fluid and a wall,

A Tprocess = Tf -T, (28)
or between the boundaries of the flow,
A Tproccss =Tw—Tw2 29

Then this temperature difference is chosen to be the char-
acteristic temperature difference, AT, with which the
temperature changes can be scaled:

ATO= AT s . (30)

The generation number in this case is called the
Brinkman number (4), -

VZn 0
T A Tieocess

or the product of the Prandtl number, Np,, and the Eck-
ert number, Ng. (13),

V2 cpn°
AT process K

N, Br

Ng: * Np,= = Npg,

Both definitions are equivalent. The name, ‘‘Brinkman
number,’’ seems to be preferred in studies on developing
temperatures in channel flow and the name, ‘‘Eckert
number,”’ is preferably used in studies on viscous dissi-
pation in thermal boundary layers.

Flow Without Imposed Temperature Difference

Scaling of the temperature changes due to viscous dis-
sipation becomes more difficult when there is no given
temperature difference A Tprocess. This situation always
occurs when isothermal flow conditions are attempted
(which is quite common in polymer processing). Viscous
dissipation would disturb these isothermal conditions and
its extent has to be estimated in modeling efforts.

The most common choice of scaling factor for temper-
ature changes in nearly isothermal processes is

7
AT =ATpeu= — 33
heol <6n/6T>To,y° 33)

The temperature changes are of interest since they affect
the viscosity and hence, affect the flow pattern. A viscos-
ity with a temperature dependence of the Arrhenius type,

n=ae?T 34)

where T'= absolute temperature
gives a characteristic rheological temperature difference,

T3
AT e = >

where T, = absolute reference témperéture
For molten polymers, AT peq = 30-70 K
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The temperature differences are then scaled as (T —
T,)/ AT eq and the generation number is called the
Nahme number (/7).

Vzna
kA Theo

(36)

Ny, =

In nearly isothermal processes, the Nahme number is a
measure of how much viscous dissipation affects the tem-
perature dependent viscosity. Large values of Ny, indi-
cate that isothermal conditions cannot be maintained.

Note that the temperature change and the generation
number cannot be scaled with a temperature level T,.
For scaling, one always has to use a temperature differ-
ence. A quantity (T — T,)/T,) would be dimensionless;
however, it would adopt different values in different tem-
perature scales (Fahrenheit, Celsius, Kelvin).

ENERGY DISSIPATION AND STORAGE

The work done for deforming a viscous material is ir-
reversibly converted into internal energy, i.e. it is dissi-
pated. The work done for deforming an elastic material,
however, is stored as potential energy, which can be re-
covered mechanically. An example is a rubber band in
the stretched state. It can perform work when contracting
to its original length. The dissipation function, 7:Vv, is
applicable to both cases. It gives the rate of work done
for deforming a material, independent of whether this
material is viscous, elastic, or viscoelastic. The dissipa-
tion function is always positive when applied to viscous
materials. It adopts positive or negative values with elas-
tic and with viscoelastic materials. The name *‘dissipation
function”’ is actually misleading when describing storage
and recovery phenomena in deforming elastic materials.

Example 4: Oscillatory Strain of a Hookean Material

An elastic material is placed between two extensive
parallel plates, as shown in Figure 3. The lower plate is
stationary and the upper plate moves with velocity.

Up=1v, cos (w?) (37
aty = h
A momentum balance gives the velocity in between the
plates. For uniform properties, it has the simple form

vx(y)=§ v, cos (w?) 38)

Calculate the rate of work done in order to deform the
material. Integrate to find the total work for one cycle.
Compare the result to the behavior of a Newtonian fluid
in the same experiment.

The rate of work done is given by the dissipation func-
tion,

7:VV=Ty7, 39
The shear rate is given by the velocity field of the exper-
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Figure 3. Sandwich device for shearing a material.

iment, Equation 38:
v

cos (wt) (40)
h
The stress in the Hookean material. is proportional to the
shear strain,

Txy = G'ny (41)
The dissipation function becomes

2

. . G Vo .
ToYoy = ny},'yxy=; ; sin (w?) cos (wt)

G [v,\? .
=~2; <71_> sin Quwt) 42

One cycle requires work

2x/w . G Vo \2 [2r/w
W= SO oty di=5— (= So sin Qwt) dr

G fv,\2/ -1
(%) () sos om0 @)

As expected for the elastic material, the work per cycle
is equal to zero. The work done in one half of a cycle is
recovered in the other half.

The same experiment, however, with a Newtonian
fluid, would be described by a dissipation function:

U, \ 2
TV =m(Yx)2=pn <;> cos? (wf) (44)

and work per cycle

2r/w 2
W= So M <%’) cos? (wt) dt

Vo \ 2
=p (;) 7r (45)

The work is dissipated in thé material.

APPENDIX: DERIVATION OF THE
DISSIPATION TERM

Consider a small volume element (volume V, surface
S) of a material which is deformed by a stress o on the
surface. The rate of work done on the surface of the ma-
terial element is calculated by integrating (n- o-v)s over
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the entire surface,

E= Ssg @ - o v)sdS (46)

n is the outward unit normal on the surface and (n- ¢)g is
the force per unit area of surface. Multiplication with the
surface velocity gives the rate of work per unit surface.

The work done on the surface is used for deforming
the material element (change of shape and volume), ac-
celerating it, and increasing its potential energy. This is
shown in the following. It will lead to an expression for
the rate at which work is being done for deforming the
volume element.

The surface integral of Equation 46 is replaced by a
volume integral (using the Gauss theorem):

H‘(n-o-v)st=SHV-a-vdV 47)

N

and the kernel in volume integral is replaced by the iden-
tity
V.o

V- -g-v=0:VvV+v - (48)

The physical meaning of the product v-V- ¢ can be ex-
plained from the stress equation of motion. Scalar muiti-
plication of the local velocity v with the stress equation
of motion (3),

-ag+pv- g (49)

gives an expression for v:V-a. D/Dt is the substantial
time derivative. The last two equations are introduced
into the volume integral, Equation 47. The result of the
derivation is

SSS (n- o v)sds

=NS [a:Vv+§§tv2—pV‘g] av (50)

L—Rate of change of
potential energy
per unit volume.

Rate of change of
kinetic energy per
unit volume.

Rate of work for
changing the volume
and shape, per unit
volume (see Eq. 1).

0:Vv is the dissipation term in the equation of energy.
For many applications in polymer processing, the
changes in kinetic and potential energy are negligibly
small; all the work done on the surface is practically used
for deforming the volume element.

Modular Instruction Series

LITERATURE CITED

1. Armstrong, R. C., and H. H. Winter, ‘‘Heat Transfer for Non-
Newtonian Fluids,”’ in ‘‘Heat Exchanges Design and Data Book,”’
Section 2.5.12, E. U. Schliinder Ed., Hemisphere Publ. London
(1982). ‘

2. Astarita, G., and G. Marrucci, ‘‘Principles of Non-Newtonian
Fluid Mechanics,”” McGraw Hill, London (1974).

3. Bird, R. B,, Stewart, W. E., and E. N. Lightfoot, *“Transport
Phenomena,’’ Wiley, New York (1960).

4. Brinkman, H. C., Appl. Sci. Research, A2, 120-124 (1951).

5. Cox, H. W., and C. W. Macosko, AIChE J., 20, 785-795
(1974).

6. Dinh, S. M., and R. C. Armstrong, AIChE J, 28, 294-301
(1982). L

7. Eckert, E. R. G., and R. M. Drake, *‘Analysis of Heat Trans-
fer,”” McGraw Hill, London (1972).

8. Einstein, A., Ann. Phys., 19, 286 (1906); Ann. Phys., 34, 591
(1911). .

9. Gavis, J., and R. L. Laurence, Ind. Eng. Chem. Fund., 7, 525~
527 (1968).

10. Landau, L. D., and E. M. Lifshitz, ‘‘Fluid Mechanics,”” Perga-
mon Press, Oxford, (1959).

11. Nahme, R., Ing-Archiv, 11, 191-209 (1940).

12. Pearson, J. R. A., Polym. Eng. Sci., 18, 222-229 (1978).

13.  Schlichting, H., and J. Kestin, ‘‘Boundary Layer Theory,”” Mc-
Graw Hill, London (1955).

14. Winter, H. H., Polym. Eng. Sci., 15, 84-89 (1975).

15. Winter, H. H., Adv. Heat Transfer, 13, 205-267 (1977).

REFERENCES FOR FURTHER READING

Equation of Energy:
Bird, Stewart and Lightfoot, 1960
Astarita and Marrucci, 1974
Eckert and Drake, 1972

Dimensionless Groups:
Armstrong and Winter, 1982
Pearson, 1978
Schlichting and Kestin, 1955
Eckert and Drake, 1972
Winter, 1977

Polymer Processing:
Winter 1977, 1975
Pearson, 1978
Cox and Macosko, 1974
Gavis and Laurence, 1968
Dinh and Armstrong, 1982

Thermal Boundary Layer:
Eckert and Drake, 1972
Schlichting and Kestin, 1955

Heat Transfer Coefficient for FLOW WITH VIS-
COUS DISSIPATION:

Eckert and Drake, 1972

Winter, 1977

Suspension Viscosity Defined with DISSIPATION
FUNCTION:

Einstein, 1906, 1911

Landau and Lifshitz, 1959

STUDY PROBLEMS

1. Calculate the dimensionless temperature (7" — T,)/7T,
in degrees Fahrenheit, Celsius, and Kelvin. Use T =
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Figure 4. Shear flow of two immiscible ﬂﬁlds in a gap between
paraliel plates.
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180°C and T, = 150°C. Discuss how a dimension-
less temperature can depend on the choice of tempera-
ture scale. HINT: Each temperature scale refers to a
different temperature as zero temperature.

. State the system of equations for the velocity, the

temperature, and the viscosity for flow in a pipe with
isothermal walls. How are the equations coupled with
each other?

When is the dissipation function positive and when is
it negative?

Consider shear flow of two immiscible Newtonian flu-
ids in a narrow gap between two parallel plates, see
Figure 4. The flow is due to the parallel movement of
the upper plate. The lower half of the gap is filled

with fluid I (viscosity ;) and the upper half with fluid
II (viscosity up). The viscosities differ by a factor of
10: py = 10up. Where is the rate of viscous dissipa-
tion higher, in the viscous fluid I or in the less vis-
cous fluid II?

HOMEWORK PROBLEMS

1.

Calculate the Nahme number for pipe flow of Exam-
ple 1. Use AT = S0 K and k = 0.2 W/mK.

. Use slip data from the literature to determine viscous

dissipation in the slip layer.

Ref.: L. L. Blyler and A. C. Hart, ‘“Capillary Flow
Instability of Ethylene Polymer Melts,”’ Polym. Eng.
Sci., 10, 193-203 (1970).

. Extend Example 4 to a linear viscoelastic material

with a shear stress

07y

Txy+>\ .B_t-

= Yy

Hint: Determine the time dependent shear stress 7,,(f)
first.

. Calculate the rate of viscous dissipation ¢(r, 6) in a

Newtonian fluid which flows around a single sphere

» (see Reference 3, p. 133).
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INTRODUCTION

In 1975 a new venture in education by and for the chemical engineering community was
initiated. Prepared by the CACHE Corporation (Computer Aids for Chemical Engineering
Education) and under the sponsorship of the National Science Foundation (Grant HES 75-
03911), a series of small self-study fundamental concept modules for various areas of
chemical engineering were commissioned, Chemical Engineering Modular Instruction,
CHEMI.

It has been found in recent studies that modular study is more effective than traditional
instruction in both university and continuing education settings. This is due in large mea-
sure to the discrete focus of each module, which allows the student to tailor the speed and
order of his or her study. In addition, since the modules have different authors, each writing
in his or her area of special expertise, they can be produced more quickly, and students may
be asured of timely information. Finally, these modules have been tested in the classroom
prior to their publication.

The educational effect of modular study is to reduce, in general, the number of hours
required to teach a given subject; it is expected that the decreased time and expense in-
volved in engineering education, when aided by modular instruction, will attract a larger
number of students to engineering, including those who have not traditionally chosen engi-
neering. For the practicing engineer, the modules are intended to enhance or broaden the
skills he or she has already acquired, and to make available new fields of expertise.

The modules were designed with a variety of applications in mind: They may be pursued
in a number of contexts: as outside study, special projects, entire university courses (credit
or non-credit), review courses, or correspondence courses; and they may be studied in a
variety of modes: as supplements to course work, as independent study, in continuing .
education programs, and in the traditional student/teacher mode.

A module was defined as a self-contained set of learning materials tat covers one or more
topics. It should be sufficiently detailed that an outside evaluation could identify its educa-
tional objectives and determine a student’s achievement of these objectives. A module
should have the educational equivalent of a one to three hour lecture.

The CHEMI Project Staff included:

E. J. Henley, University of Houston, Director
W. Heenan, Texas A & I University, Assistant Director
Steering Committee:
L. B. Evans, Massachusetts Institute of Technology
G. J. Powers, Carnegie-Mellon University
E. J. Henley, University of Houston
D. M. Himmelblau, University of Texas at Austin
D. A. Mellichamp, University of California at Santa Barbara
R. E. C. Weaver, Tulane University
Editors:
Process Control: T. F. Edgar, University of Texas at Austin
Stagewise and Mass Transfer Operations: E. J. Henley, University of
Houston, J. M. Calo, Brown University
Transport: R. J. Gordon, University of Flordia
Thermodynamics: B. M. Goodwin, Northeastern University
Kinetics: B. L. Crynes, Oklahoma State University
H. S. Fogler, University of Michigan
Material and Energy Balances: D. M. Himmelblau, University of Texas
at Austin
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Curriculum Analysis: E. J. Henley, University of Houston

The second phase of the project, designed to fill in gaps as well as develop new modules,
is under the direction of D. M. Himmelblau, University of Texas at Austin.

Steering Committee:
B. Carnahan, University of Michigan
D. E. Griffith, Oklahoma State University
L. Harrisberger, University of Alabama
D. M. Himmelblau, University of Texas at Austin
V. Slamecka, Georgia Institute of Technology
R. Tinker, Technology Education Research Center
Editors (* indicates a new task force head):
Process Control: T. F. Edgar, University of Texas at Austin

Stagewise and Mass Transfer Operations: J. M. Calo, Brown Umvcrs:ty

E. J. Henley, University of Houston
Transport: R. J. Gordon, University of Florida

Thermodynamics: G. A. Mansoori*, University of Ilinois at Chicago Circle

Kinetics: B. L. Crynes, Oklahoma State University

H. S. Fogler, University of Michigan : '
Material and Energy Balances: E. H. Snider*, University of Tulsa
Design of Equipment: J. R. Beckman, Arizona State University

Volume 1 of each series will appear in 1980; Volume 2 in 1981; and so forth. A tentative

outline of all volumes to be produced in this series follows:

SERIES C: TRANSPORT

Volume 1. Momentum Transport/and Fluid Fiow

Cl.1
-ClL.2
Cl.3
Cl4
Cl.s
CL.6

Simplified One-Dimensional Momentum Transport Problems
Friction Factor

Applications of the Steady-State Mechanical Energy Balance
Flow Meters

Packed Beds and Fluidization

Multi-Phase Flow

Volume 2. Momentum Transport, Viscoelasticity and Turbulence

C.1
C2.2
C2.3
C2.4
C2.s

Non-Newtonian Flow I—Characterization of Fluid Behavior
Non-Newtonian Flow 1I—Fully Developed Tube Flow
Viscoelastic Fluid Flow Phenomena

Turbulence: General Aspects Illustrated by Channel or Pipe Flow
Turbulent Drag Reduction

Volume 3. Equation of Motion, Boundary Layer Theory and Measurement Techniques

Ci.l
C3.2
C3.3
C34
C3.5
Ci.6

Measurements of Local Fluid Velocities

Equation of Motion

Navier Stokes Equation for Steady One-Dnrecuonal Flow
Boundary Layer Theory

Boundary Layer Theory: Approximate Solution Techniques
Diffusivity Measurement Techniques in Liquids

Volume 4. Mathematical Techniques and Energy Transport

Ca.1
C4.2
C4.3

Mathematical Technigues I—Separation of Variables
Mathematical Techniques II—Combination of Variables
Elementary Steady-State Heat Conduction

Modular Instruction Series

. K. Patterson

. J. Gordon and N. H. Chen
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. F. Beckwith
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C4.4  Natural Convection R. D. Noble

C4.5 Unsteady-State Heat Conduction K. I. Hayakawa

C4.6 Differential Energy Balance R. D. Noble

Volume 5. Mass Transport

C5.1 Unsteady-State Diffusion S. Uchida

C5.2  Mass Transfer in Laminar Flow S. H. Ibrahim

CS.3  Turbulent Mass Transfer S. H. Ibrahim

Volume 6. Transport Phenomena—Special Topics

Cé6.1 Bubble Dynamics: An lllustration of Dynamically Coupled Rate Processes T. G. Theofanous

C6.2 Miscible Dispersion R. S. Subramanian

C6.3 Biomedical Examples of Transport Phenomena I—Coupled Diffusion Effects R. H. Notter

Cé6.4 Biomedical Examples of Transport Phenomena I1—Facilitated Diffusion R. H. Notter

C6.5 Mass Transfer in Heterogeneous Media P. Stroeve

C6.6 Advancing Front Theory R. Srinivasan and P. Stroeve

Volume 7. Calculation and Measurement Techniques for Momentum, Energy and Mass Transfer

C1.1 Converting the Equation of Motion to Dimensionless Form W. F. Beckwith

Cc7.2 Newtonian Flow Through Fittings, Bends, Contractions, Expansions and Non-Circular Ducts K. A. Solen

Cc13 Viscosities of Non-Newtonian Fluids L. Y. Sadler, Il

C7.4 Viscous Dissipation Term in Energy Equations H. H. Winter

C7.5 General One-Dimensional Steady-State Diffusion Problems C. E. Gratz

C7.6  Coupled Transport D. Lozowski and P. Stroeve

Cc1.7 Application of Electrochemical Limiting Current Technique to the Study of Interfacial R. F. Savinell, F. W. Klink
Mass Transfer—Introduction and Theory and J. R. Sauter-

C7.8  Application of Electrochemical Limiting Current Technique to the Study of Interfacial
Mass Transfer—Examples of Applications R. F. Savinell and F. W. Klink

’

Publication and dissemination of these modules is under the direction of Harold I. Abramson, Staff Director, Educational
Activities, AIChE. Technical Editor is Lori S. Roth. Chemical engineers in industry or academia who are interested in
submitting modules for publication should direct them to H. I. Abramson, Staff Director, Educational Activities, American
Institute of Chemical Engineers, 345 East 47th Street, New York, N.Y. 10017.
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