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Dynamics of shear aligning of nematic liquid

crystal monodomains

Abstract The equations of linear
and angular momentum for nematic
liquid crystals have been described
with Ericksen’s transversely isotro-
pic fluid [TIF] model and solved for
start-up of shear flow at constant
rate and varying initial alignment
conditions. An analytical solution
for the rotation provides predictions
of the nematic director which closely

agree with experimental results of
Boudreau et al. (1999), supporting
the validity of Ericksen’s TIF model.
The solution is limited to flows
where the effects of director gradi-
ents are negligible.
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Introduction

Liquid crystals can have the spatial disorder and flow
behavior of liquids while displaying the anisotropic
properties of crystals. In the nematic phase, the centers-
of-gravity of the liquid crystal molecules are randomly
positioned in space, showing no long-range order, yet
are aligned towards a common direction, the director n.
The anisotropy of nematics leads to complex flow
behavior that has been the focus of many studies over
the past few decades (Larson, 1999).

The continuum theory of Leslie and Ericksen (Leslie,
1968) has proven very effective in describing the flow
behavior of small nematic liquid crystals. When subject
to shear flow, it is well known that nematic liquid
crystals will either align in the direction of shear within a
small angle 6; (against vorticity) or will tumble with
vorticity, finding no preferred orientation. This behavior
was predicted by Leslie (1968) and experimentally
observed (Géhwiller, 1972; Meiboom, 1973; Skarp;
1981). Theoretical investigation of tumbling phenomena
in nematics has been specific to alignments in the
vorticity plane (Carlsson, 1984; Burghardt and Fuller,
1990), (¢ =0), or to numerical analysis of the Leslie-
Ericksen equations (Han and Rey, 1993; Han and Rey,
1995). The flow aligning-tumbling behavior of small-
molecule nematics has also been predicted using molec-

ular theories (Archer and Larson, 1995; Kroger and
Sellers, 1995).

Here we explore predictions of the continuum theory
for nematics in start-up of shear flow at constant rate
and compare the predictions to experimental observa-
tions of Boudreau et al. (1999) who studied the dynamic
response of small, shear aligning nematic liquid crystals,
4-n-pentyl-4’-cyanobiphenyl [SCB] and N-(4-methoxyb-
enzylidene)-4-butylaniline [MBBA]. Samples were
sheared with various initial alignment conditions so a
fair assessment of the continuum theory’s ability to
predict the response of nematics to shear should be
possible using their experimental results.

Continuum Theory

The Leslie-Ericksen continuum theory of nematic liquid
crystals (Ericksen, 1961; Leslie, 1968) has been described
extensively (Stephen and Straley, 1974; Leslie, 1979; de
Gennes and Prost, 1993; Larson, 1999) so only a few
points will be discussed here. In continuum theory two
vector fields, the velocity, v, and the director, n, describe
the dynamic phenomena of the nematic. The coupling
between the director orientation and flow fields requires
two balance laws, the balance of linear momentum and
the balance of angular momentum.
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If we assume the nematic to be incompressible then
the director is constrained to unit length. The director is
also assumed to be non-polar such that n and —n are
identical. The relative importance of viscous and
distortional elastic forces on the behavior of the nematic
is described through the Ericksen number, Er, which is
the ratio of viscous torques to elastic torques and is
given by (Larson, 1999)

_mr )
K

where 5, 7, [ and K are the characteristic viscosity, shear

rate, length, and elastic constant of the system, respec-

tively.

Er

Director Rotation in Shear Flow

We begin the study of nematic liquid crystals in shear
flow by defining a Cartesian coordinate system accord-
ing to Fig. . The x-component is in the shearing
direction, the y-component in the gradient direction, and
the z-component in the vorticity direction thus making
the x-y plane the vorticity plane and the x-z plane the
shear plane. The director is defined by its two polar
angles, 0 and ¢, where 0 is the tilt angle of the director
out of the shear plane and ¢ is the rotation angle of the
director out of the vorticity plane. In Cartesian compo-
nent form, the director will then be written as

n, = cos 0 cos ¢,
n, = sin0, (2)
n, =cosfsing .

With this definition, the unit length constraint on the
director is automatically satisfied. To avoid the confu-

v(y)

f-

Fig. 1 Cartesian coordinate system with x the shear direction, y in the
gradient direction and z in the vorticity direction. The director is
defined with the polar angles 0, the rotation out the shear plane, and ¢,
the rotation out of the vorticity plane

sion of multiple representations of the director in polar
form, we limit the range of 0 and ¢ to

—90° < 0<90°% 0°<¢<180° . (3)

To simplify the analysis we assume that Er > 1 and that
no other forces act on the nematic so that we can neglect
all spatial gradients in the director field such that the
liquid crystal will behave as a single monodomain. The
velocity gradient for shear can then be assumed uniform
across the sample and is defined as

Vy=7y, 0, =0, =0 . 4)

These simplifications yield a set of differential equations
for the balance of angular momentum during transient
shear flow (Leslie, 1987)

(03 — o) di) + (o3 cos? 0 — o sin* 0) cos p = 0 (5)
dop . . .
(o3 —az)cosﬁa—yaz sinfsing =0 (6)

where o, and o3 are the second and third Leslie viscosity
coefficients. We also impose initial conditions on the
director

0(t=0) =00, ¢(t=0)=dy . (7)
To solve these equations, we begin by following Leslie’s

(1987) procedure of eliminating time in these equations
to yield

d0  (apsin® 0 — a3 cos® 0)

= 8
d¢ oy tan Otan ¢ )
Integration gives

sin’ ¢ ~tan?0— o3/ ©)

sin’ do  tan? 0o — o3 /oy '

The stable solutions (Leslie, 1968) for the director
angles,

0 =0, =0°

L, ¢ (10)
0=—-0., ¢=180°
are defined by the Leslie angle, 0;, where
tan® 0L = a3 /oy . (11)

The two solutions result from the constraint that n=—n;
so only one solution, § = 0 and ¢ = 0°, needs to be
considered. (a3/ap) > 0 predicts the well known shear
aligning behavior which was found for many nematic
liquid crystals where hydrodynamic torques align the
liquid crystal in the direction of shear but tilted out of
the shear plane against vorticity by an angle 6;. When
(a3/ap) < 0, there is no solution and the liquid crystal
will find no preferred orientation, indicating tumbling
director behavior.
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This result of Leslie is important in understanding the
steady-state flow phenomena of liquid crystals but does
not address transient flow situations where the Leslie-
Ericksen model has also been used. Predictions on flow
induced instabilities have been made by examining small
deviations from a director initially in the vorticity
direction (Pieranski and Guyon, 1973; Leslie, 1976;
Manneville and Dubois-Violette, 1976). The nematic
response to oscillatory shear has been studied for flow
alignment instabilities (Clark et al., 1981) and for
determining the ratios (o3/on) and (|on|/K3) (Mather
et al., 1995). In the following analysis we will neglect
elastic forces, using Ericksen’s TIF model for the extra-
stress tensor.

In this study, we are interested in the transient angle
0(r) during the start-up of shear in shear aligning
nematics. A general time dependent solution to
Egs. (5) and (6) can be found by first eliminating
the strain rate dependence when dividing Eq. (5) by the
strain rate p, and then eliminating ¢ with Eq. (9).
The resulting differential equation is

do <tan2 0, — tan? 0)

dy 1 — tan? 0
tan? O — tan? 0 12
2 ‘2 L—
x cos 9\/ L= sin” ¢y (tnzﬁ—tnzﬁo>
Integration yields the strain, y, as a function of 0
tanZ 0 — 1 tan 0, — tan 0
0) = 1 76
1) < 2tan 0y > [n<tan0L + tan 0 ( )>
tan 0 — tan 0,
—In| ———T(6 13
n(tanBL—HanGo ( 0)” ’ (13)

where 7(6) is a function of the initial angles 6, and ¢,:
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Fig. 2 Theoretical predictions for the start-up of shear flow for the
dimensionless tilt © versus strain with 6,=0° 6. =7° and ¢q=0°
(), 45° (), 80° (- -) and 89° (---)

O has little dependence on the initial rotation angle, ¢,
appearing to approach the stable solution of ®=1 in a
simple exponential manner. As ¢ approaches 90°,
however, a sigmoidal behavior of ® becomes increas-
ingly apparent, being characterized by an increasing
incubation period before ©’s approach steady-state.
With 0y=0° as ¢y — 90° the incubation period ap-
proaches infinity since the condition (6 =0°, ¢ =90°) is
an unstable steady-state. Figure 3 shows plots of (¢/¢g)
versus strain for the same conditions as in Fig. 2; since ¢
and 0 are related through Eq. (9) the primary focus of
further discussion will only be on the behavior of 6
during shear.

a2 tan? O +tan O tan 6 a2 tan2 Op —tan2 0
1 sin ¢0 ( tan? 0 —tan? 0, + 1 Sin d)() tan? 0 —tan? 0,

T(0) =

ain2 tan? 0y —tan 0p tan 0 in2 tan? 0p —tan? 0
1 Sin d)o < tan? 0, —tan? 0, + 1 Sin ¢0 tan? 0, —tan? 0,

The solution is explicit in () but can not be inverted
analytically into 6(¢) or ¢(¢). However, evaluation of the
solution to provide values for y (Eq. 13) and ¢ (Eq. 9) is
straightforward.

Figure 2 shows plots of the dimensionless tilt angle ©,
defined as

0 — 0y

O — 0y’
versus the strain for different values of the initial
rotation angle ¢¢ and with 0,=0°. The only material

parameter is 0p. In this example we use 0y =7° as
reported for MBBA by Gihwiller (1972). For ¢y < 45°,

@:

(15)

When the initial tilt angle of the director is within the
range —0; < 0y < 60, the director response is sigmoi-
dal, as described above, and Eq. (13) provides a unique
solution for y(0). However, when the initial director
alignment lies in the range 0 < 0y < 90° and
90°< ¢g < 180°, the director response is no longer
sigmoidal and a unique solution for y for a given 0 no
longer exists. Figure 4 shows a characteristic example of
the director tilt angle response with an initial alignment
in the non-sigmoidal range. The trajectory of the
director from its initial state to steady-state is shown
in Fig. 5. Hydrodynamic torques initially rotate the
director with vorticity around the z-axis. This increases
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Fig. 3 Theoretical predictions for the start-up of shear flow for the
rotation angle (¢/¢o) versus strain with 6,=0°, 6, =7° and ¢q=0°
(—). 45° (), 80° (- -) and 89° (---)
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Fig. 4 Theoretical predictions for start-up of shear flow for tilt angle
0 versus strain with 6, =10°, 8, =7° and ¢o=120°

the tilt angle, 0, until ¢ < 90°, after which rotation of
the director around the z-axis decreases the tilt angle as
it approaches the Leslie angle. When the director shows
this type of behavior, Eq. (13) can still be used to predict
the director response. Starting from the initial align-
ment, Eq. (13) is solved for the strain, y, in a marching
procedure to the maximum tilt angle, 0,... Equation
(13) is then reinitialized with 6, = 60,,x and the
corresponding value for ¢, according to Eq. (13), then
solved in a marching procedure as 0 — 0;. The two
solutions are then combined to give the entire director
response.

So far we have assumed the director response to be
independent of Er. With extreme shear conditions, either
very low or very high Er, this behavior may no longer

exist. For example, when the director is normal or near
normal to the vorticity plane, Pieranski and Guyon
(1973) show that for shear rates less than a critical value
(or Er less a critical value) elastic torques caused by wall
anchoring will stabilize the director in its initial orien-
tation. The director will thus remain normal to the
vorticity plane instead of rotating towards it. Converse-
ly, at higher shear rates (higher Er) the very long
incubation times predicted when the director is initially
normal to the vorticity plane may not be experimentally
observed. Flow instabilities may cause the director to
rotate out of its initial state and towards the vorticity
plane earlier than predicted (Pieranski and Guyon, 1973;
Leslie, 1976).

Approximate solution for 10l < 0,

To fit experimental data, Boudreau et al. (1999) em-
ployed a fit function of a much simpler form than
Eq. (13) for cases where |0y] < 0r. We would now like
to develop that approximate expression using the
analytic solution and evaluate its validity. We begin by
considering the case where the director is initially
aligned with velocity, ¢o=0° and 0,=0°. Under these
initial conditions, Eq. (13) can be simplified to yield 6 as
a function of y. The small angle approximation, tan
0~ 0 and tan 0; =~ 0, reduces Eq. (13) to

exp [ﬂ —1

2] +1

1 —tan?0,

O = yo =
L 2tan 0

(16)

The characteristic strain, yy, is fully defined by the Leslie
angle, 0;.. Equation (16) suggests that an approximation
of the solution given in Eq. (13) may be of the following
form

yA

Fig. 5 Trajectory of director from initial alignment to steady-state
alignment under shear for 6, = 10°, 6. =7° and ¢, = 120°
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where ©* is an approximation of © and yg46 is the
characteristic strain where ©@*=(e — 1)/(e + 1)=0.46,
as proposed by Boudreau et al. The parameters 7 46 and
m can be found by equating the values and slopes of ©*
and O at 0 = 0p.46. Y0.46 1S then given by Eq. (13) with
0 = 0o.46

(e = 1)(0L — o)

(17)

0o.46 = -0 18
0.46 e+ 1) 0 (18)

and has the following form

Yo.46 = XVL (19)

where x = fn (¢o, 0y, 0) and is equal to the square-
bracketed term of Eq. (13) for 6 = 0g46. Once y¢.46 is
known, the exponent m can be found through differen-
tiation of Eq. (17) with respect to y and with Eq. (12):

(e + 1)2 tan? 0L — tan? 00.46

_ 2
m = x4e(0L o) cos” Oy 46

tan 0

) tanz QL — tan2 0046
X 1 — sin” 0y 5 5
tan® 0 — tan”® 0
In the special case of an initial alignment with 0y=0°

and for small Lesliec angle (<20°), x and m can be
approximated as

(20)

(e+ 1) —2sin® ¢y + \/(e+ 12— 4esin® ¢,

x~1+In
(e+1)—2esin2q§0+\/(e+1)2—4esin2d)0
(21)
46 .2
m=~x,/1 ————=sin . 22
\/ (6+1)2 ¢0 ( )

The dependence of x and m on 0 drops out for 0, = 0°.
If, in addition, the director lies in the vorticity plane,
¢o = 0°, x and m adopt limiting values, x=1 and
m = 1, so that Eq. (17) reduces to Eq. (16).

Figures 6 and 7 show the dependence of x and m on
¢o and 6, for 6; =7°. For -0, < 0y < 0, the director
response to shear is simple enough to be captured by
Eq. (17). When 0y < 0y < 90° and 90°< ¢y < 180°,
the director response to shear is too complicated to be
captured by Eq. (17), which is unable to predict the
relative maximum seen in Fig. 4. Within this region of
initial alignments, marked as the dashed lines in Figs. 6
and 7, x and m can only be used to give yg4¢ and the
slope of © at g 4¢.

A comparison of ® and ©* is shown is Fig. 8 for the
same conditions as in Fig. 2 (0, = 0°). We see good

— T T T T 1
120 140 160 180

Fig. 6 x versus initial rotation ¢, with the initial tilt angle 0, as a
parameter

4 T T T — T T T T T T 1
0 20 40 60 80 100 120 140 160 180

Fig. 7 m versus initial rotation ¢, with the initial tilt angle 6, as a
parameter

agreement between ©* and © for both high and low
values of initial rotation angle ¢,. Further comparisons
show similar agreement over the entire valid range of
Eq. (17).

Comparison with Experiment

Recently, Boudreau et al. (1999) studied the orienta-
tional changes of small nematic liquid crystals,
4-n-pentyl-4’-cyanobiphenyl [SCB] and N-(4-methoxy-
benzylidene)-4-butylaniline [MBBA] under shear start-up
conditions for various initial orientations. Orientation
of the liquid crystals was observed through conoscopy
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strain, y

Fig. 8 Dimensionless tilt angle © versus strain for analytical solution
(solid lines), Eq. (14), and approximation, Eq. (17), with 6y=0°,
0L =7° and ¢o=0°, 45°, 80° and 90°

(Born, 1969; Wright, 1911) while initial alignment
conditions were achieved through anchoring at the
boundaries by rubbing of polyimide surface coatings
on containing glass walls. This method will impose a
small initial tilt angle 6, (Boudreau et al., 1999; Weiss
et al., 1998). The initial rotation angle ¢, can be chosen
freely.

To get a sample with an average initial tilt of 0°,
anchoring surfaces were buffed such that one surface
would have a pre-tilt of around 2° and the other around
—2°. This produces a splay of the director from one
surface to the other such that the sample may slightly
deviate from monodomain conditions. Since our solu-
tion to the director response does not consider spatial
distributions of the director field, we need to assume that
the observed response of splayed samples is that of
monodomains. As a first approximation we assume that
the observed director response of these splayed samples
is dominated by the alignment with the fastest approach
to steady-state. In all experiments studied, this align-
ment was that at the wall where the tilt angle was
maximum, +2° Therefore, all predictions to the
experimental results of Boudreau et al. were made for
monodomains with an initial tilt of 6, = 2°.

For high Er, anchoring can safely be neglected except
for providing the initial director alignment, 0y and ¢,.
Boudreau et al. looked at both low and high Er flows
but only those at high Er (>900) will be examined here
so as to exclude elastic effects near walls as much as
possible.

Figure 9 compares the reported experimental tilt
angle to the 0-predictions for ¢, = 0°, 45° and 90° for
MBBA. The predictions agree with the experimental
results over the entire range of high Er conditions

1.0+ vy —
o 4/4 AL0A 04 aA
n/. ;AA ’
0.8 B 7
A o/
A o /,/
0.6 ‘
e) 4‘ J 6= 2°
3 / .
. , theory  experiment
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A / §,=45 ----- A
0241 d $,=90° —-—- o
" 7
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. strain, y

Fig. 9 Evolution of dimensionless tilt angle © for the start-up of shear
flow for MBBA. Predictions made with 6,=2°, 6 =7°, and ¢q=0°
(—), 45° (~) and 90° (---). Experimental results with ¢,=0° (m)
(Er=2374), 45° (A) (Er=983) and 90° (O) (Er=2374)

studied thereby indicating that Ericksen’s TIF model
accurately describes the director dynamics of small
nematic liquid crystalline molecules.

Conclusions

The director response of nematic liquid crystals (with
(a3/o) > 0) to the start-up of shear has been predicted
by solving the equations of linear and angular momen-
tum for Ericksen’s TIF model. The only material
parameter is the Leslie angle, 6;. For shear aligning
nematics, the director always rotates to the alignment
director of Eq. (10), but rotation is delayed with
increasing ¢o. The analytical solution has been closely
approximated by a simple sigmoidal function for
|0y < Op. Initial director angles, 6, and ¢, can be
freely chosen according to experimental conditions.

The theoretical predictions of director rotation
quantitatively agree with experimental observations for
high Er shear flow of MBBA with 6, = 2°and ¢y = 0°,
45° and 90°. Modeling calculations show that the small
deviation of 2° from the perfect initial director align-
ment, 0, = 0°, has a large influence on the start-up
behavior. Further experiments are in progress with the
objective of alternating the alignment conditions from
(+2°,-2°) to (+2°,+2°).
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