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The known generalized Newtonian fluid “power law” solu-
tion of the radial flow between parallel discs has been used to
estimate the normal stress, the magnitude of inertia, and the
temperature changes due to viscous dissipation. The flow near
the wall has been found to be “nearly steady shear flow;” thus
the three viscometric functions can be expected to describe
the stress at the wall. Further away from the walls, however,
the flow is very different from “steady shear flow.”

The temperature field in the radial flow section depends on
the dimensionless parameters Nahme number, Graetz number,
and ratio of inner to outer radius, as well as on the thermal
initial and boundary conditions.

Experimentally the radial pressure profiles for flow of three
different polyethylenes and of one polystyrene have been stud-
ied, The measured pressure profiles are about 20 percent lower
than the calculated ones from the “power law” solution. This
discrepancy cannot yet be explained; the effects of normal
stresses, of inertia, or of viscous heating in these experiments
are too small to give a measurable effect.

Approximate Calculation and Measurement of the

INTRODUCTION

T he disc-shaped cavity is a simple geometry for
studying the molding-filling process in injection
molding. The material enters in the center through a
single circular tube and flows radially outwards be-
tween the parallel-disc surfaces (Fig. I).

The assumptions made in the following analysis
are

e v=(v,(r,z),0,0),

® p — constant,

e Steady flow (8/9t = 0),

o Rotational symmetry (9/06 = 0), and

o Inertia terms in the equation of motion are
negligible,

Additionally, it will be assumed later on, that the
GNF “power law” solution describes the wall shear
rate y.(r, h/2) reasonably well.

Using the assumptions that v.(r,z) is the only
nonzero velocity component and that the density
is constant, one gets from the steady state equation
of continuity

f(z)

Ur:—r- (1)
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The rate of strain tensor in cylindrical coordinates is
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y=vo+ (Vo)*t = 0 2% 0 | (2)
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Fig. 1. Radial flow geometry.
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with f = df/dz. At the wetted disc surfaces (z =
*=h/2, f(R/2) = 0, f(h/2) £ 0) the material is
being sheared only. Towards the middle (0 < |z <
h/2, f(z) # 0, f'(z) 5= 0) the elongational com-
ponents y,, and v, become more and more im-
portant, and in the center plane (z = 0, f(0) £ 0,
7'(0) = 0) there is elongational flow only (pure
shear).
The equation of motion simplifies to

o 5
r-component: =— —-E e
or or
Ter — Ton aT'rz
-— = (3)
r 0z
op 072z 1l o
z-component: 0= —— — — _ — __ (rr,)
0z oz T or

(4)

For calculating the velocity field v, and the pres-
sure p one has to choose a form of the stress tensor,
which describes the rheological behavior of non-
Newtonian liquids in radial flow. Because of the
simplicity the GNF (generalized Newtonian fluid)
with 7 given by the “power law” model (Eg 5), has
been applied by a number of investigators (1-6),
some of them using a numerical approach to include
temperature effects and to tackle the unsteady mold
filling problem (3-5). Laurencena and Williams (6)
show experimentally that the “power law” model
gives surprisingly good predictions for the radial
pressure profile at the wall. The liquids they used

5. g T11 = T2z s

had some elasticity (-——— <lfory, < 1000) :
Ti2

For more elastic materials (such as molten poly-

mers), however, or at higher flow rates, one might

expect significant deviations from the “power law”

solution,

There seems to be no analysis available for fluids
with large shear thinning effect and large elasticity
as in molten polymers. Schwarz and Bruce (7) used
a perturbation technique for studying small devia-
tions from the Newtonian behavior of a Rivlin-
Ericksen fluid including inertia effects. In their ex-
periments they were aiming at the zero shear rate
region. For high flow rates reportedly the spacing
of the plates could not be maintained.

In a similar way, Piau and Piau (8) studied high
Reynolds number flow of fluids with a characteristic
time constant much smaller than the residence time
in the radial flow section. They treated radial flow
as if it were viscometric and showed a perturbation
solution for a second-order fluid.

In the following, the GNF power law solution will
be described briefly. Then it will be modified to in-
clude the normal stress components. The velocity
field of the GNF power law solution will be used
to estimate the normal stresses at the wall and their
effect on the radial pressure profile at the walls. In
addition the importance of inertia will be estimated.
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GNF POWER LAW SOLUTION

In steady shear flow the shear-rate dependence of
the viscosity is often described by a “power law”

= m =t (5)

in which y = \/1/233y;% For molten polymers
the power law exponent n usually has values be-
tween 0.2 and 0.5,

The additional assumptions for the GNF “power
law” solution are

e The normal stress terms in the r-component of
the equation of motion ( Eq 3) cancel

arrr Trr = Toe

~0 (6)

or T
(Note that these terms sum sum to exactly zero
for Newtonian fluids ), and Eq 3 simplifies to

op [

0= —— — (7)
or 0z
e The radial pressure gradient dp/dr is a func-
tion of r only, and
® y = | v/, i.e. the other terms are negligible.
As reported (2, 6), using Egs 7 and 5 one gets
the velocity

f(=)
U, =
”
1+n
0 2n-1 2z\ "
— + _ —_
N N
and the pressure
p(r) —p(B) =
+(2n+l Q )m 2R
=) n xRh? h(l—n)
()

=()7] @

in which (7.:),, is the shear stress at the outer end
of the upper wall. The sign in the small parentheses
has to be used for converging radial low respectively.
Q is the volume flow rate (Q > 0 defined inde-
pendent of fow direction), R is the outer radius,
and h is the distance between the discs.

Figure 2 shows pressure profiles for different
“power law” exponents. For the Newtonian fluid
(n = 1) the pressure profile is a straight line on a
semilogarithmic plot. With decreasing values of n
the pressure drop gets smaller.

WALL STRESS DESCRIBED BY THE
CRIMINALE-ERICKSEN-FILBEY
(CEF) EQUATION (9)

The success of the GNI" “power law” solution in
describing the radial pressure distribution in poly-
mer solutions (shown by ref. 6) might be explained
by the shear stress term being much larger than the
normal stress term (in Eg 3). But in spite of that,
the shear stress 7, in radial flow can be expected to
be very different from the calculated values =, ( 7 )
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Fig. 2. Pressure profiles for GNF “power law” fluids in con-
verging ((rez)wr < 0) and diverging ((rrz)w,p > 0) radial
flow.

of the power law solution: a liquid element is sub-
jected to varying shear stresses as it moves through
the radial flow section. Thus, the flow is different
from what is defined as “steady shear flow.”

As an exception, however, the thin liquid layer
closest to the walls is subjected to steady shear
flow. This might be explained by looking at a fluid
element slowly moving in a small distance & from
the wall (Fig. 3). The velocity field is assumed to
be constant with time (3/9¢ = 0), but changing
with position, Close to the wall the changes in flow
direction are much smaller than perpendicular to
it. As the fluid element moves along slowly, it is
being deformed at relatively high shear rates y
(9v,/ox, >> 0vy/ox;). Because the fluid moves
slowly, the changes in y are very slow, too; this
type of flow is called “nearly steady shear Hlow” or
“nearly viscometric flow.” In the limiting case 5 — 0
in Fig, 3), a liquid element sitting at the wall is

Y, //WA/PL// L

V(Xp )‘.2,)(3)

Fig. 3. Sketch of a velocity field near a wall and the path of
a fluid element in a small distance & from the wall.
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deforming at a constant rate, which depends on its
radial position,

N (L (10)

(Note that this argument is valid for channel flow
in any geometry as long as (a) the fuid wets the
wall and (b) the velocity stays constant with time.)

The extra stress tensor - at the upper wall is de-

fined by the viscometric functions 4, 6, and 3.

(Tfl')w:'—T]‘}w, 'qmml -;,wl‘ﬂ—l (11)
(rr— 1w =— 0%, O m'|3u[*~2 (12)
(Tz: — Tﬂﬂ)w = ﬁ .}',w2’ B o m”I }"ml"n_ﬂ

m, m’: 1, n’: n" > O; m” < O:

which will be described approximately by a power
law throughout the following calculation.

The r-component of the equation of motion may
be evaluated at the wall. After adding 8r.,/3r on
both sides, Eq 3 can be integrated over r to give

.,[R'—:T(P—FTR)CIT:
— frn [ ;r_ (e — 7ex) +% (7rr—Tgq) }dr

B

TTZ
0z

dr (13)

Using the power law form of the viscometric func-
tions, one can integrate the normal stress terms and
the shear stress term to get the solution for the nor-
mal stress p + .. perpendicular to the wall:

Normal stress terms

" [:_r (m—m)ﬁ% (m—mg)w} dr

e B dr
:(Trr—Tz:)w.R[l— ]_E_J:_ (Trr—’f'ﬂa)w——
R T

e T [(i})n'—l]

+ni b [(?) —1] e

Shear stress term

R 2 ’m ;| R
bl T2 wd e i (i ’wln Hnd
‘[ = (7r2)udr m ol o2 If j: roidr

nR r \1-n f”w
1—\— (15)
l—n R f'wo
The integrated r-component of the equation of
motion becomes

(P + 722) e — (P + T=z)w,n
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= (a2 [1 - (1))

l—n fy R
+ (rrr—‘l‘ﬂ)w.fl il [ (E)n _1]

n’ r

+ (7ae — 'rmi)m.ani [ (%)n — l} (16)

L

In the sign convention, which has been used
in this analysis, the shear stress r,, is positive for
outward flow and negative for inward flow. The first
normal stress difference is always negative, whereas
the second normal stress difference is approximately
one-fourth the first normal stress difference.

For diverging radial flow (f'w < 0; 0 < (7rz)wr)
the CEF equation with power law material functions
predicts smaller drops than one would expect from
the GNF “power law” solution (Eq 9). Thus the
normal stress effects assist in the injection molding
process. From the estimate (Eq 17) one expects
large normal stress effects in very elastic liquids, at
large flow rates, or at large values of h/R.

For converging radial flow (0 < fw; (7rz)w < 0),
however, the normal stress terms add to the shear
stress term, and one gets a pressure drop larger than
one would expect from the GNF “power law” solu-
tion. The normal stress distribution at the wall
(p 4 7z=)u,r contains the wall pressure p(r) of the
GNF “power law” solution (Eg 9) as the first term
at the right hand side. The normal stress terms (Eq
14) are of negligible influence if

o [(E)"' 1—n (m—m)

nBf"y To n' Trz w,R
R nH 1 Tzz =— 768
+() S (E=2) e an
To n Trz w,R

For small deviations from the GNF “power law”
solution, the wall shear stress at the outer radius
(7rz)wr, and the first and the second normal stress
differences at the wall and at the outer radius (=,
— 7ez)w (T2 — 7oe)u,r can be evaluated approxi-
mately by introducing the velocity field given in
Eq 8 into the viscometric functions (Egs 11 and 12).

2 1A
(TT:):U,H p"s.‘::(j)m( Q n+ )
Th*R n
Q@ 2n4 1\
7 Tzz ), "'tf—m’( 18
" ( Q 2n + 1 3%
(rez — 100)up = —m i )

The wall shear rate of the GNF “power law” solution
is )
yw:&:n_hf_‘”_—_-(ﬁ Q =+l

T 2 r =h’R n

(19)

If the actual wall pressure differs very much from
the GNF “power law” solution (Eq 9), one might
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expect that the actual wall shear rate is not de-
scribed accurately enough by the velocity field given
in Iig 8. In this case it seems unavoidable to seek a
complete solution of the radial flow problem by
means of a constitutive equation which is valid in
the whole radial low channel.

ESTIMATE OF INERTIA

Up to this point the effect of inertia has been
assumed to be negligible. But at high flow rates,
where normal stress effects become important,
inertia effects might also be of influence. Thus a
criterion is needed for estimating the magnitude of
the inertia.

The r-component of the equation of motion with
the inertia term included for steady radial flow is

aUr ap 81-,,. Tpp — Top a'i",-;

[ = —— — — 20
P or or or T 0z (20)

The inertia term might be transformed using Eq I
and then approximated by averaging the velocity
o, o> p ( Q )2
pr—=—p—n= ——\| ——

or T r * Qxrh

The integration of the equation of motion leads to

(P + ) wr — (P + 722)wr
= (rdeag— T2 [1-(L)"]

1—n Fa
+ = redua——" [ () 1]
+ (e = mdan— | (2) —1]
G2 ]

By comparing the inertia term and the shear stress
term in Eq 21 one can see that inertia is negligible if

pf'w Q
Rf”w(‘rrz)w.n 217?‘0]1

fws fw and (7:)wpr can be estimated from Eq 18
and Eg 19. The dimensionless group can be under-
stood as a Reynolds number for radial flow. If this
criterion shows that inertia is important, a solution
of Eq 20 without averaging of the velocity field
should be sought. For Newtonian fluids such solu-
tions have been given in the literature (10, 11).

)2<<1 (22)

VISCOUS HEATING

The temperature field in radial flow is determined
(1) by convection in r-direction, (2) by conduction
in z-direction, and (3) by viscous dissipation. Due
to the small thermal diffusivity of polymers, the heat
conduction in fAow direction can he neglected com-
pared to the convection. For an incompressible fluid
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the equation of energy in terms of the fluid tempera-
ture 7' is

pCL, — =

ar 0z*

The elongational contribution in the dissipation term

is being neglected. The temperature dependence of
the viscosity is described by an exponential function

2 v, T) =n{v To) - exp[—D(T —T,)] (24)

b = — 1/y (049/0T); is the temperature coeflicient
of the viscosity.

For defining the dimensionless parameters, a ref-
erence velocity ©, and a reference viscosity 7 are
defined. The reference velocity has been chosen
to be the outer radius R divided by the average
residence time in the radial flow section

v, = 2 (25)
=Rh
and the reference viscosity has been chosen at T =
T,andat y = ©,/h

7= (107
= — 4]
7 7 Tm h (2‘ )
The equation of motion (Eq 7) and the equation
of energy (Eq 23) are coupled through the tem-
perature dependent viscosity. The extent of the
coupling increases with the value of the Nahme

number

oT T ; ( oo, )2 (23)

oz

bo 2y
k

which compares the dissipation term and the con-
duction term in Eq 23. For small values of Na (Na
< 0.5) the dissipation is very small, and experi-
ments can be performed under conditions which
are practically isothermal; the coupling between
the equation of motion and the equation of energy
can be neglected.

By comparing the convection term with the con-
duction term of Eq 23 one gets the Graetz number

h*p,
Gz =

aR

Na = (27)

(28)

A large value of Gz means that heat convection in
flow direction is more important than conduction
towards the walls; on the other side, a small value
of Gz means that the wall temperatures determine
the fluid temperatures.

The velocity field is singular at r = 0. For small
values or 7,/R the viscous dissipation in the entrance
section (r == 7,) is very large, even at small Na.

One gets a system of two nonlinear partial differ-
ential equations (Lgs 7 and 23) and an integral for
the volume flow rate at each radial position. It has
been solved by an iterative implicit difference
method,

FFor the demonstration of some results of the calcu-
lation, the wall temperatures and the inlet tempera-

A2

tures are assumed to be constant (equal to T,).
IFor the analysis of experimental results, the mea-
sured values for the temperatures are the initial
and boundary conditions in the numerical program.

The influence of viscous dissipation on the pres-
sure profile is shown in Fig, 4. The upper curve
corresponds to isothermal flow of a GNF “power
law” fluid (g 9). Any temperature increase (due
to viscous dissipation in this case) lowers the pres-
sure profile. The temperature effects are the largest
at large values of Na and small values of Gz. For
small values of Gz the residence time of the fluid
is long enough to conduct most of the generated
heat towards the isothermal walls; at large Gz, the
heat of dissipation is convected out of the gap very
rapidly.

The developing temperature profile (see Fig. 5)

" is dominated by convection and viscous dissipation,

at first. The fluid temperatures increase in flow
direction, and the temperature gradients towards
the walls and towards the middle get steeper and
steeper. The flow, however, slows down in r-direc-
tion (v, ~ r~!), and the conduction towards the
walls becomes dominating. The fluid temperatures
decrease again, since isothermal walls have been
assumed. The temperatures in the center plane level
off to the temperatures of the outer regions.

EXPERIMENTS

Experiments have been performed by the author
together with Bertsch (12) at the Institut fiir
Kunststofftechnologie der Universitét Stuttgart.

The experimental set up is described in Figs. 6
and 7. A single screw extruder (with a mixing ele-

1.4 T T
No=0
hE Na Gz =100 ]
=1; Gz=I0
1.0~ Na=5; Gz =100 -
Na=5; Gz=10
= In:
loy 0.8~ -
o
B =
t 0.6f- ]
e N
&1
==
04} -
02 =
0 ] \
0.l 0.2 0.5 10

Fig. 4. Temperature effects on the radial pressure profiles;
n = 04; 1o/R = 0.05. (1rz)w,r is caloulated using Eq 18
and m(Ty).
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ment on the tip of the screw) supplies a molten
polymer of uniform temperature. The molten poly-
mer flows through a converging canal and through a
single pipe (d = 0.3 cm, 1/d = 8) into the center
of the radial flow section. After passing the radial
flow section, the material flows radially inward again
through 16 radial channels (equally distributed on
the circumference) and leaves the die through a
single pipe. The flow rate in the radial flow section
has been varied by changing the speed of rotation

T I T T
| _0.122
Parameter: r/R
0.2 |
Na = | 0.238 0078
Gz =10
~ B 0466 )
5 10063
N 1.0
t Ol % g
a
0 1 |
O 02 04 06 08 IO
2z
h
0l T T T T
to Na = |
f_l__. Gz = 100 0466 A 0.1
N
= T ~0.063
s 1.0
A N\

0
O 02 04 06 0B 10

Fig. 5. Developing temperature profile in radial flow; n =
04; ro/R = 0.05; Na = 1; Gz = 10 and Gz = 100; con-
stant inlet and wall temperature.

SV S BARREL

...g\

£
:

'l* MIXING
( SCREW

-~ RLL
P

S
W,

—.“*-\A \a
4

RADIAL FLOW
CHANNEL

Fig. 6. Setup for radial flow experiments,
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Fig. 7. Radial flow die.

of the extruder screw and by opening the bypass.
The mass flow rate has been measured and then
converted into a volume flow rate using specific vol-
ume data of Hellwege, Knappe, and Lehmann (13).
The temperature is being measured at the wall of the
radial low section (T1-T7) and in the slow flowing
polymer (T8-T12) before it enters the converging
channel. The pressure is being measured by means
of pressure transducers in holes at 6 radial positions
(ro = 3.2 cm; ry/ry = 0.125; ro/7g = 0.281; rafry =
0.500; ry/rg = 0.719; r5/r; = 0.875). The gap width
is adjustable through distance rings (h; = 0.0385
= (0.0012 cm; h, = 0.0895 =+ 0.0012 c¢m; h; — 0.1885
=+ 0.0012 cm ).

The accuracy of the measurements is = 1.7 per-
cent for the mass flow rate, == 1.5 percent for the
pressures, and = 0.2°K for the temperatures.

The shear-dependent viscosities, measured by
Robens (14), of the molten polymers used are
listed in Table 1. Unfortunately, no normal stress
data is available.

Table 1. Power Law data (14) of Molten Polymers.
Range of Shear Rates: 60 < v < 1200 sec—1

m

Polymer T,°C  Nm~—2secn n

Low-density polyethylene 170 1.387 x 10¢ 0.370
(Lupolen 1800H, BASF) 190 1.087 x 10¢  0.379

High-density polyethylene, 170 1.286 x 104 0.400
low molecular weight 190 0.908 x 10¢  0.435
{Lupolen 3035K, BASF)

High-density polyethylene, 250 1.734 » 104 0.417
high molecular weight 270 1.168 » 10¢ 0.485
(Hostalen GF 4760, Hoechst)

Paolystyrene 190 4.208 x 104 0.222
(SB 475K, BASF) 210 2.654 x 104 0.250
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Table 2. Data of Radial Flow Experiments

Polymer (p + Tzz)rlv 105 Nm—2
and
number Q, cmd sec—! h, cm Tos °C r I Iy rs Is Tg
1800H
1 3.45 0.0385 190.0 273.7 220.3 162.3 107.3 71.0 46.9
2 1.71 0.0385 182.5 236.8 186.0 131.5 88.7 58.7 38.3
3 0.86 0.0385 179.0 188.5 147.3 103.8 69.7 44.7 28.8
4 8.20 0.0885 187.5 132.4 113.3 92.4 78.6 65.8 57.5
5 4.03 0.0895 177.5 110.6 93.8 71.3 64.6 53.9 47.2
6 2.06 0.0895 180.5 86.0 73.1 59.5 49.7 40.8 36.3
7 16,04 0.1885 179.6 93.2 85.8 78.6 74,8 70.1 68.3
8 7.84 0.1885 174.0 80.2 71.7 67.2 63.4 59.3 58.3
9 4,21 0.1885 169.5 68.3 61.5 57.2 h3.8 50.1 49.5
3035K
10 3.55 0.0385 180.0 286.1 223.7 157.0 99.3 65.3 39.8
11 1.81 0.0385 179.5 221.9 172.5 120.3 75.3 48.5 29.5
12 0.84 0.0385 180.0 162.8 122.4 86.1 52.6 32.8 18.2
13 8.23 0.0895 176.0 130.5 110.1 89.5 71.0 59.6 52.2
14 411 0.0895 179.5 99.3 82.4 67.1 52.6 43.9 38.5
15 2.07 0.0895 180.0 72.2 57.9 49,1 37.5 29.6 21.7
16 B.26 0.1885 180.0 70.6 64.5 57.9 54,3 50.8 50.4
17 4,20 0.1885 182.0 52.4 47.3 449 39.8 36.9 37.5
GF 4760
18 1,03 0.0385 250.0 373.0 264.3 188.7 116.9 75.9 44.5
19 0.49 0.0385 259.0 282.5 188.9 133.8 80.8 51.8 29.6
20 0.25 0.0385 251.0 226.0 143.4 100.5 60.2 37.7 21.4
21 2.51 0.0895 247.5 152.8 129.4 105.0 81.2 69.1 59.3
22 1.28 0.0895 255.0 118.7 99.9 79.9 61.6 52.0 44,1
23 4,66 0.0895 256.0 195.0 167.2 135.2 105.9 91.6 78.1
24 5.39 0.1885 257.0 112.0 103.8 96.3 86.5 84.6 B0.6
25 2.80 0.1885 259.0 80.2 73.8 69.3 61.8 60.4 a1
26 1.34 0.1885 255.0 56.1 51.2 45,9 43.0 42.0 40.0
SB 475K
27 0.70 0.0385 182.0 260.0 213.5 162.5 110.3 79.1 54.9
28 0.34 0.0385 182.0 205.6 166.8 126.4 85.0 h8.4 39.4
29 0.21 0.0385 184.0 183.3 148.5 111.2 72.8 49.8 33.2
30 1.84 0.0895 181.0 148.9 132.6 114.0 91.8 79.5 70.6
31 0.96 (0.0895 181.0 122.2 108.1 92.4 73.0 62.6 55.7
32 0.42 0.0895 181.0 91.2 79.3 68.3 53.2 4.7 39.8
33 4,01 0.1885 226.0 56.6 51.2 49,4 42.6 40,0 38.8
34 1.90 0.1885 202.0 53.0 18.6 45.6 39.2 37.0 36.4
35 1.10 0.1885 180.0 75.4 70.2 66.4 58.0 54.4 53.2
36 0.73 0.0385 190.0 215.6 176.8 133.4 88.4 61.8 41.6
37 0.72 0.0385 200.0 182.4 147.6 109.6 72.4 46.6 324
38 0.73 0.0385 210.5 159.6 128.4 95.0 61.6 40.8 26.6

The measured “pressures” (p 4 7.:); are listed
in Table 2; the pressure profiles (normalized with
the calculated wall shear stress (Eq 18) at the outer
radius) are shown in Iigs. 8a-d. The measured pres-
sures are about 20 percent below the calculated
values of the isothermal GNF power law solution.

DISCUSSION OF THE EXPERIMENTS

Normal Stress Effects

In a recent publication, Bird, Hassager and Abdel-
Khalik (15) suggest a method of calculating the first
normal stress coefficient 8( y2) from viscosity data.
For a number of fuids (including molten low-
density polyethylene) these calculated values agree
with experimental data in the literature. In the
following, this method will be applied to get normal
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stress data for the low density polyethylene
(Lupolen 1800H) used in the radial flow experi-
ments. The zero shear rate viscosity », needed for
this calculation will be taken from a study by
Meissner (16) on a low-density polyethylene of the
same brand. IFor shear rates above 4sec~! the tem-
perature dependent viscosities of the two polyethyl-
enes are practically identical; this suggests that the
zero viscosities might be the same, too. The zero
viscosities and the calculated values m’ and n’ are
shown in Table 3.

Evaluation of the normal stress terms in Eq 16
(by assuming m” = — 1/4 m’, n” = n’) gives pres-
sure values, which are 0.1-1 percent below the
GNF power law solution.
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Pressure Hole Error Due to Normal Stresses

The systematic error py in the pressure measure-
ment due to the pressure holes can be estimated by
means of a formula derived by Higashitani and

Pritchard (17).

PH%-B"("‘"—
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(29)

For the low-density polyethylene the actual pressure
drop is about 0.3-1.3 percent larger than in the
data given in Table 2.

Inertia

Application of Eq 22 shows that inertia is negligi-
ble for all experiments,
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Tahle 3. Zero Shear Rate Viscosity; Normal Stress Data
Calculated from Viscosity Data Using a Method Suggested
in Reference 15 (m’ and n’ Defined in Eqg. 12)
Polymer: Lupolen 1800H

m',
T,°C 1o, Nm—2 sec (16) Nm~—2 secn n
170 2.04 x 104 (interpolated) 3.3 x 104 0.40
190 1.05 x 10¢ 2.7 x 104 0.40

Viscous Heating

During the performance of the experiments signifi-
cant viscous dissipation has been observed, and the
lowering of the viscosity due to temperature raises
diminishes the value of the radial pressure drop.
The temperature of the molten polymer coming from
the extruder screw has been quite uniform (AT <
0.5°K). In the radial flow section, however, the wall
temperature could not be maintained constant (AT
< 5°K), which means that the melt temperatures
differ even more from the initial temperature level.
For estimating the magnitude of the viscous dissipa-
tion, the wall temperatures are taken as thermal
boundary conditions, To get the temperature dis-
tribution at the entrance of the radial flow section,
the developing temperature field in the feed pipe
(¢2r,) is being calculated with an existing numer-
ical program (18). Corresponding temperatures at
the exit of the pipe and at the entrance to the radial
flow section are calculated by assigning them to the
same value of the stream function in the two flow
geometries.

The values of the Nahme numbers between 0.01
and 0.43 show that dissipation does not. influence
the pressure profile very much. The Graetz number
has values between 0.2 and 33.3 The ratio of the
radii is r,/R = 0.048.

Altogether, the normal stress effects and the effects
of viscous heating show the right sign for bringing
experimental values and analytical solution closer
together. But these effects are much too small to
explain differences of about 20 percent.

In the layer near the walls, the extra stress is
described by the viscometric functions. In some dis-
tance from the walls, however, the velocity is large
enough to have the rheological properties affected
by the changes of the rate of strain along the stream
lines; the actual shear stress r,. in this region might
be lower than in the GNF power law solution,
where the shear stress is calculated with the local
shear rates. If this explains the low values of the
measured pressures in diverging radial flow, experi-
ments in converging radial flow should give pressure
drops larger than calculated with the GNF power
law solution.
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NOMENCLATURE
¢ = thermal diffusivity, m?/sec
b =-1/4 (09/8T ), = temperature coefficient of vis-
cosity, °K™!
¢ = specific heat capacity, J/kg°K
f(z) = function (see Eq I) [m%ec™'], f = df/dz;
fr = d¥f/dz”

Gz = Graetz number (see Eq 28)

GNF = generalized Newtonian {luid

h = gap width of radial flow channel, m
k= thermal conductivity, J/msec°XK

m, n = see Eq 11

m'n’ = see Eq 12

m’, n"” =see Eq 12

Na = Nahme number (see Eq 27)

= pressure, N/m?

volume flow rate, m?/sec

radius, m

inner and outer radius respectively, m
temperature, °C

velocity

reference velocity (see Eq 25)
coordinate

second normal stress coefficient, Nm~%sec®
rate of strain tensor, sec™!

<
&

=
I

B

01

= n el = Pl e

shear rate, sec™!

shear viscosity, Nm~%sec

reference viscosity (sec Eq 26), Nm~%sec
coordinate

first normal stress coefficient, respectively
Nm~Zsec?

p = density, kgm~?

T — extra stress tensor, Nm—2

> >l
N1

at upper wall (z = + h/2)

w =
R = atouter radius (r = R)
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