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Summary

A path line tracking procedure is derived which determines the strain
history of infinitesimal material elements in steady axisymmetric flow. Path
line tracking requires a poinrwise knowledge of the kinematics as it is gained
in numerical calculations (or may be available from measurements). Tabu-
lated values of density as a function of position are also required. Path line
tracking then interpolates spatial positions along path lines at residence
times (¢ — t’), magnitude of velocity, velocity gradient normal to the path
line, and slope of path line at time ¢. This knowledge is then condensed into
the time dependent Finger strain components C ~'(¢’, 1) for a given material
element in steady axisymmetric flow.

The tracking is applicable to compressible flows of arbitrarily large
strains, since the strain history C ™! is determined for a material point
(infinitesimal material element).

Path line tracking avoinds differentials in space, except when determining
the shear strain and when interpolating between the given point values of
veloci)ty. The method is tested in a specific example (planar stagnation flow)
and it is applied to modelling of processing flows.

1. Introduction

Strain histories determine the stress in polymeric material elements, the
laminar mixing, and the development of molecular orientation. Process
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modelling therefore involves methods of determining strain histories of
material elements. The integration along path lines gives detailed insight on
the various contributions of the strain history at consecutive states of the
process. The processing history can then be tailored to specific rheological
properties or to specific physical properties of the material after processing.

The strain history between some time ¢’ in the past and the current time ¢
is described by a relative strain measure, such as the Finger strain tensor
C (¢, 1) or the left Cauchy-Green strain tensor C(t’,). Any other strain
measures can be calculated from C. Other strain measures are therefore
included in the following arguments, even if they are not mentioned further.
The determination of a strain history has been called tracking since it
requires to follow the upstream path of individual material elements.

Path line tracking is complicated in a three-dimensional flow. However, it
simplifies considerably for steady axisymmetric flow (without circumferen-
tial velocity component). This is a class of flows which is common to many
shaping operations in polymer processing. Examples are pipe extrusion, film
blowing, blow molding, and sheet extrusion. This justifies the derivation of a
special tracking procedure for steady axisymmetric flow including the limit-
ing case of planar flow.

Several research groups have developed tracking techniques for studying
highly elastic fluids in axisymmetric or planar flows: Court, Davies and
Walters [1] calculated the strain history of material elements in two-
dimensional flow. The strain tensor components were determined from
spatial derivatives of the positions of material elements with respect to their
preceding positions. The differentials were evaluated using a finite difference
scheme of Lax-Wendroff as given by Mitchell and Griffiths [2].

Viriyayuthakorn and Caswell [3] developed a tracking technique to study
axisymmetric die entry flow of memory integral fluids. Finger strain compo-
nents were calculated from the displacement vector of the material element
and the resulting spatial deformation gradient. Computational difficulties
and methods of improvement were discussed in detail.

Bernstein and Malkus [4] developed a method to construct stream lines in
a given velocity field. Transient times of a particle between two points along
a stream line are calculated by means of a so-called drift function.

There are two major methods of determining the components of the
Finger strain tensor and the Cauchy Green tensor: The strain of a material
element is completely defined by the change of three independent material -
vectors e, [S]. The material vectors are deforming affinely with the material.
At time ¢, they are chosen to form an orthonormal system (unit length, right
angles). At preceding times ¢/, the three material vectors e,(¢’,t) were
stretched and tilted according to the strain of the material in the flow
between ¢’ and ¢. Change in length and change in angle are given by the
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strain tensor components (left Cauchy-Green tensor)
(C(t,’t))i.j:ei(t,’t)'ej(t,’t)7 (])

which easily is inverted to get C~'. The components refer to the orthonor-
mal system e,(t,t). The strain is calculated at material points, ie. the
material vectors e, mark a material element which is small enough to make
strain gradients have no influence on the components of C.

The strain tensor components can alternatively be determined by differen-
tiating the spatial coordinates r(¢) of a material point at time ¢ with respect
to their previous spatial coordinates r’(¢’, r) at an arbitrary past time ¢’. Bird,
Armstrong and Hassager [6] list the components in different coordinate
systems. The method is advantangeous in cases in which the path lines r’ are
known as explicit functions in end position, r. The method, however, is
inconvenient for numerical calculations in which the displacements along
path lines (or the velocity) are given as tables of discrete values. Other
approaches have to be found which avoid the differentiation with respect to
the spatial position. Such a path line tracking method will be developed in
this study.

2. Path line tracking

The starting point of this tracking procedure is a given velocity field of
steady axisymmetric flow v(z,r). The circumferential velocity component is
taken to be zero. The velocity field might be known from measurements or it
might be an approximate velocity field in successive numerical iteration.
Path lines, r(z), are equal to the stream lines (¢ = const.). They are given in
implicit form

r(z)

ri

pv.r dr:xpf apv’.r dr = const., ' 2)

where r; and r, are the inner and the outer bounds of the flow and (z,r,8) is
the global coordinate system. The residence time on the path line

t—t' = ‘%=fﬁ\/l+tan2a% (3)

2

depends on the axial displacement from z’ to z. The slope of the path line
tana=v, /v, (4)

depends on the local velocity components.

The strain is best described by an observer which translates and rotates
with material elements, when they move along their path lines. Therefore, an
orthonormal coordinate frame x, is chosen locally at each position along the
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Fig. 1. Deforming material element in steady axisymmetric flow (infinitesimal element, drawn
out of proportion). The material vectors e;(¢’, 1) are defined in a cotranslating and corotating
frame x;.

path line, see Fig. 1: x, in flow direction (tangent to the path line), x, normal
to an axisymmetric stream surface, and x, in the stream surface normal to x,
and x,. By definition of the path line, the velocity has the components

(v),=(]v|,0,0). (5)

The subscript p (for local) is a reminder that the components are written in
the local frame on the path line.
The shear rate

Y), = 08v, /dx, +dv, /3x, (6)

is equal to the velocity gradient normal to the path line.

The strain tensor components in the local frame are calculated from eqn.
(1). A material element is marked by three material vectors e,(?’,7), see
Fig. 1. One material vector is chosen to be tangent to the path line at time ¢
and therefore remains tangent during the entire flow (by definition of path
lines in steady flow). It might be worth mentioning that this is the only part
of the derivation which requires the flow to be steady. In an unsteady flow,
the material vector e, would not remain tangent to the path line.

Before defining the second material vector, it is easier to define the third
one, e,(t’,t). It is always directed in #-direction of the global coordinate
system of the axisymmetric flow. Vectors e, and e; are normal during the
entire flow (since there is no shear in the 1-3 plane), but they change their
lengths. The second material vector, e,(¢’,?) is normal to e;, but it changes
its angle with respect. to e;:due: to shearing strains in the flow. The three
material vectors are shown .in:Fig.2. The components of the material vectors
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are

(e,(r',1)),=(L;',0,0),

(ex(,1)),=(¥L; ', L7 ",0),

(es(r',1)),=(0,0,L5"). )

At time ¢, the vectors e, become orthonormal, i.e. the material element
becomes a unit cube.

Scalar multiplication of the material vectors, eqn. (1), gives the Cauchy-
Green tensor )

L2 yL;'L;! 0 7
(Cr,n),= [ vLi'Ly' (1+9°)Ly2 0 (8)
0 0 L;?

and its inverse, the Finger strain tensor
(1+y*)L] —vLL, 0
(C—I(t,’t))p: —vL\L, L3 0. (9)
0 0 L3
The shear y and the change of length in the three directions, L,, depend on
the kinematics along path lines. The stretches L, are specifically determined
from the local values of velocity, radial position, and density.
The stretch in path line direction, L,, changes the cross section, A, of a

stream tube around the path line, see Fig. 3. The mass flow rate is constant
in the stream tube '

o(£)0,(¢) A(1) = p(1)0,(1) A(0). o (10)

A mass element along the tube changes its length /| during the motion from
1 tor:

p(t),(1) Ay =p ()1, (1) A(2). =)
Combination of the two equations gives the stretch of a length in 1-direction™
' L(1) o)
L(t,t)=57r="—"F>. _ 12
=30 = o) (12)

The material element in Fig. 1 is part of a ring-shaped element around the

axis of the axisymmetric flow. A change in radial position is therefore
associated with a change in circumference and hence with a stretch of a
length in 3-direction:

Lt t)=r(t)/r(r). (13)

ety e
t



e(tt) %,
2 —_— — — — — ="
///\ //
E-—X———-—-% D
\ \ AN
\
\\ \ \
\ \ N
\ et ) |
“ X, ‘\ 2
§3(Lt)_____ __A//
X

Fig. 2. Strain of infinitesimal material element between ¢’ and ¢ (using 1., =0.65, 1., =1.35. 1.,
=1.15,y=0.85). '

Fig. 3. Path line and stream tube of infinitesimal cross section A(¢). Change of length of
incremental material element during flow between ¢’ and ¢. .

Planar flow requires L,(’,7) = 1 during the entire strain history. The mass of
the material element is conserved between ¢’ and 7. The change of separation
of a neighbouring stream surface becomes

p(1')

L) = p(1)L\Ly"

(14)

The tangent of the shear angle, y(¢’,¢), is the fourth quantity to be known
for a complete description of the strain between ¢’ and t. We may tempor-.
arily call the components of the second material vector (a(¢’), b(¢’),0). Then
the tangent of the shear angle is defined as

y(¢',t) =ale) /b(1’). (15)
We consider an intermediate state ¢”, with ¢/ <t <t. During the short time
interval d¢”, an infinitesimal displacement

da” =4,(¢")b(1") de” (16)
is imposed on the endpoint of material vector e,(¢”). This displacement in

1-direction is stretched between state " and state ¢’, according to the stretch
of material vector e,(t'):

e(t’)
e, (1”)

= 3a(1")b(t")

da’ =da”

L/(t",1)

L(t,t)"° (17)

N Y
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The total displacement in 1-direction integrates to
’ — ] ,,' 7 144 ’” 7
a(t)—Ll(t,’t)[ T2 (7)b(1”)L (17, 1) di”. (18)

Recall that b(¢”") = 1/L,(t"”,t). The tangent of the shear angle, eqn. (15), is
therefore calculated as
Ly(t',t) rLy(2",1) |
Lo ) L e

y(t',t) = () de”. ‘ (19)

It is an interesting result that the shear y(¢’, t) not only depends on the shear
rate y,, but also on the stretches between 7’ and 1.

It has to be noted, that the components of the strain tensor are calculated
in a coordinate system which is tilted by angle

a=tan '(v,/v.) (20)

with respect of the axis of the flow, taken at the position on the stream line
which corresponds to time ¢.

3. Example of the tracking procedure

The tracking procedure can be demonstrated in a flow with curved path
lines and with known Finger strain components. A convenient example of
such a flow is planar stagnation flow with uniform rate of deformation and
constant density, see for instance ref. [7). The velocity components in a
principal coordinate system (x,y,z) are given as

(v) =(éx, —¢éy,0) (21)

with a uniform extension rate é. The Finger strain components in the
principal coordinate system (x,y, z)

(x/x')2 0 0
(€™ ) =10 (x’/x)2 0 (22)
0 0 1

describe the strain of a material element which moves from x’ to x along the
path line xy = B (see left side of Fig.4). For testing the tracking procedure
the same Finger strain components are calculated by choosing a material
element with a material vector e (") which is tangent to the path line (see
right side of Fig. 4). The curved path lines follow

xy = B = const., (23)
and the normal vector has the components
(y,x,0)

(n) =22t
e

(24)
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Fig. 4. Infinitesimal material element in plane stagnation flow, eqn. (18): strain between x(r")
and x(1) (using xy=9, x(+')=2, x(+)=6). The material element on the left hand side has
edges parellel to x and y. The material element on the right hand side has one edge tangent to
the path line xy=B. The path line tracking procedure is tested by showing that the Finger
strain C(¢’, ¢) is independent of the choice of material element.

The shear rate in the local coordinates ( x,, x,, x;) becomes

4xy§
f, =——. 25
YlZ X2 +y2 ( )

The shear and the stretches between positions x’ and x on a path line are
calculated from equations (12), (13), (14), (19):

—B_{xld/BZ_xA/BZ} (26)

Y:xlz

x*/B* +1

(27)

(28)
(29)

Finger strain components in the tilted frame in the Fig.4, right side, are
determined by introducing v, L,, L,, L, into eqn. (9). Rotation of the
coordinate system gives the components of eqn. (22), i.e. the tracking
method passes this test application. The rotation tensor between the local
coordinate frame (x,,x,,x;) and the global frame is

cos a sina 0
(Q)=| —sina cosa O ‘ (30)
0 0 1 .

with cosa = (1 + B?/x*)~}/2
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4. Application to processing flows

The path line tracking is a first step to the study of strain, histories of
individual material elements in processing flows. The strain ténsor compo-
nents are needed to evaluate memory integrals of the stress and of the
distribution function. Typical memory integral equations for the stress are
the rubberlike liquid equation of Lodge [S] and its modifications. Recent
molecular theories by Doi and Edwards [8] and by Curtiss and Bird [9] give
the distribution function of macromolecular materials as a memory integral
of the strain.

Modelling studies most commonly prescribe the kirdematics in some
simplified way. The two-dimensional flow field is made dne-dimensional by
choosing a representative stream line or by averaging ov[r the cross section.
Examples for representive stream lines are the center line in injection
molding [10,11] and the center line in the spinning protess [12]. An average
strain history was used for modelling the spinning praocess {13] and the film
blowing process [14]. A distribution of strain histories has been studied by
assuming shear flow in an injection mold [11,15] and by superimposing shear
and extension in axisymmetric flows [16-18]. These studies, however, are
restricted to path lines which are nearly parallel to the flow axis. The current
tracking procedure is derived for path lines with arbitrary curvature as long
as the flow is steady and axisymmetric (or planar, as a limiting case).
Density changes are also permitted.

Path line tracking is currently applied to the modelling of processing
flows. The modelling basically consists of three Steps.

(a) Approximate determination of the kinematics and the temperatures by
means of conventional modelling techniques.

(b) Tracking of material elements along their paths in a processing device.
The time dependent strain components are determined from the kine-
matics (strain history) and the temperature change with time is calcu-
lated from the temperatures along the path.

(c) Calculation of the stress for the strain- and temperature-history using a
rheological constitutive equation. Molecular orientation can be de-
termined by calculating distribution functions from molecular theory.

Most polymer processing flows are complex in nature. The flows are
unsteady from a Lagrangian point of view and/or shear and extension are
superimposed onto each other. The kinematics (not the dynamics), of these
flows, however, can often be determined approximately by simple calcu-
lations. The kinematics of contained flow in channels (for example in
extrusion dies) can be locally modelled by steady shear flow, i.e. one assumes
that the flow in a specific cross-s{ction of a rapered flow channel is
essentially equal to the velocity field in a parallel channel of the same cross
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section. This assumption is equivalent to the classical “lubrication approxi-
mation”

d1/dx, >9d7/dx,,97/9x,; p=p(x,), ‘ (31)

(with x, being the normal to the channel cross section) together with an
assumption that the shear stress locally can be determined from the local
shear rate and the corresponding shear viscosity. The rheological constitutive
equation then simplifies significantly. These are good assumptions for two
reasons:

(1) Flow channels in polymer processing are designed such that changes in
cross sectional area occur only gradually. Step changes in cross section
are avoided.

(2) Any steady flow near a rigid surface (no slip assumed) reduces to shear
flow. This can be easily checked using an arbitrary velocity field:

Near a wall of normal x,, the velocity gradients can be ordered

dv Jdv Jv
>

ox,  ax, ox, (32)

if the fluid does not slip. Conservation of mass then requires dv, /dx, =0
near the wall. With these conditions, an arbitrary flow reduces to shear flow.
For a detailed analysis of flow near a wall see ref. [19]. The rheological
behavior near the wall is completely described by the three visometric
functions. Note that if the fluid slips along the wall, extensional components
are introduced into the flow and the rheological behavior becomes more
complex.

In the next modelling steps (tracking and calculation of stress), the
kinematics are taken to be known. Later, one might want to return to these
initial calculations and improve the velocity with the calculated stress. This
complicated step has not yet been attempted in this approach. Methods for
iterative numerical determination of the velocity field are given by Court,
Davis, and Walters [1] and Viriyayuthakorn and Caswell [3]. The developing
temperatures should be taken from measurements or they may be calculated
using established numerical techniques, see for instance ref. [20].
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Notation

A area, m’

B constant, m?, xy in planar stagnation flow
Cc(t,1) relative Finger strain tensor, —,

e material vectors

L, stretch of material element in i-direction, —,
n vector normal to path line

r coordinate, path line r(z)

4 time; s

v velocity, m/s

Xy X3, Xy local coordinate system on path line

z axial coordinate

« angle of path line with respect to z

Y shear

Y shear rate, s '

p density, kg m™?

Y stram function, ¢ = const. is path line in steady flow
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