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A numerical method has been developed for simulating
fully developed multilayer shear flows of non-Newtonian
fluids with arbitrary viscosity functions. Poiseuille and
combined Poiseuille/Couette flows in both slits and annuli
may be modeled. The method employs a finite difference
system where grid points lie on streamlines and move to
their correct positions as the solution procedure converges.
Interfaces are easily handled as particular streamlines
with the equation of motion replaced by a boundary con-
dition. The method is stable for high interface viscosity
ratios and readily handles a large number of layers. Many
authors have employed power law models to model multi-
layer non-Newtonian flows. We find that the power law is
sufficient to predict pressure gradients and interface po-
sitions in most cases, but gives unrealistically flat velocity
profiles, even when truncated at finite viscosity. Results
are presented for the Carreau fluid and for the rubber-like
liquid with shear thinning via Wagner's strain functional.

INTRODUCTION

Many of the most promising new polymer
processes in the packaging and container
businesses make use of coextrusion blow mold-
ing or film blowing. Polymer parts, wire coat-
ings, fibers, and sheets are also increasingly
often extruded from more than one material.
All of these in the fully developed case are pres-
sure driven (Poiseuille) flows. In wire coating
the moving inner wall superimposes a Couette
flow.

A corresponding increase in basic fluid me-
chanics research has accompanied the indus-
trial growth. The fundamental industrial prob-
lem is to design coextrusion dies and processing
conditions for the efficient production of high
quality parts or films. Corresponding research
problems include the fully developed kinemat-
ics of planar and annular flows (1-3), evolving
planar and annular kinematics (4). noniso-
thermal effects (5, 6). material layer rearrange-
ments (7. 8). interface instabilities (9), multi-
layer die swell (10), and the multilayer distri-
bution problem (11).

This paper considers the very basic kinemat-
ics of fully developed non-Newtonian planar or
annular multilayer flows. In nearly all studies
of this problem (including all those cited above)
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researchers have employed either a Newtonian
or a power law stress constitutive equation for
each fluid layer. This, in most cases, allows the
analysis to be semi-analytical in nature. The
present study develops a fully numerical
method which allows the determination of kine-
matics for arbitrary non-Newtonian fluids.

BACKGROUND

The generic problem to be solved takes one of
two forms. 1) Given an M-layer flow with the
flow rate and material parameters of each layer
specified, what are the pressure gradient and
velocity profile of the flow? 2) In an M-layer flow
with the total flow rate, material parameters,
and interface positions given, what are the
pressure gradient, velocity profile, and individ-
ual flow rates? The first of these questions is
what a die designer might ask: an answer to the
second is what an experimentalist might use to
analyze (or predict) his or her results (12). The
first problem is the one solved in this paper.
However, one can solve the first by iteratively
solving the second, varying the specified inter-
face positions until desired layer flow rates are
reached. The iterative solution method which
we will present reduces the problem at each
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step to the second question, where interface
positions are given.

Two different solution approaches are well
known for the solution of the two problems.
Each is semi-analytical and requires an itera-
tive procedure with two parameters specified
and respecified until a converged solution is
achieved. If the pressure gradient, the interface
positions, and the position of zero shear are all
known then the velocity profile may be found
analytically for each layer by integrating the
equation of motion. The velocity profile may
then be integrated for total and individual flow
rates.

To solve the second problem, iteratively im-
prove guesses for the pressure gradient and
zero-shear position until the total flow rate
matches the desired value. See Han's book for
a clear summary of this procedure in various
geometries (13).

To solve the first problem, integrate the equa-
tion of motion stepwise from the inner wall,
fixing an interface and switching fluids when-
ever the flow rate reaches the known flow for
each layer. Again the pressure gradient and zero
shear plane must be iteratively specified. This
procedure converges when the integration over
the outer layer ends exactly at the outer wall.
This method is summarized by Schrenk and
Alfrey (1).

Both of the above methods are essentially
shooting methods. The first problem’s solution
involves a traditional shooting to an opposite
boundary and has the traditional disadvantages
of shooting methods: difficult convergence (es-
pecially with two free parameters) and poten-
tially high sensitivity to the boundary condi-
tions or to round-off errors, see e.g. (14). The
second method has the advantage of shooting
for an integral of the solution, which may be
less sensitive to the choice of parameters. How-
ever, the real disadvantage of both methods is
that they are applicable only for fluids whose
constitutive equations allow analytical integra-
tion of the equation of motion. The methods
could be extended for numerical integration of
the equation of motion, but then they would
suffer even more from the problems of shooting
methods.

The multilayer problem can be solved numer-
ically by modifying standard finite difference
(6) or finite element (15) methods to account
for the separate fluids. However, a numerical
method has developed in recent years for the
simulation of free surface flows: the stream-
lined finite element method (16-18). The inter-
face between two coextruding fluids is a free
stream surface, so a streamlined grid method is
a natural candidate for simulating coextrusion
flows. Streamlined finite element methods have
the advantage of finding free surfaces natu-
rally. as a matter of course, during the solution.
They have the disadvantage of requiring extra
overhead to move grid points at each successive
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iteration. If the grid points can be moved effi-
ciently then the advantage outweighs the dis-
advantage.

The authors have chosen a streamlined finite
difference method. Since the problem is one
dimensional (i.e. variables vary over only one
space dimension) an equivalent streamlined fi-
nite element method could have been derived.
The authors admit to a bias towards the finite
difference presentation, but the present method
also generalizes to two dimensional flows where
the method is truly finite difference (4).

BASIC EQUATIONS AND NUMERICAL
APPROXIMATIONS

This section derives streamlined finite differ-
ence formulas for fully developed planar flow.
The Appendix presents the corresponding der-
ivation for axisymmetric flow.

For fully developed shear flow in a slit with
constant cross-section the equation of motion
and the shear stress are

dry, dp
— = = 1
dy dx and ()
. dv
Txy = 0(Y) dy’ (2)
Equations 1 and 2 may be combined into
d .. dv dp
hadl — ==, 3
2 ( () dy) e (3)

d  deti) dv _ dp
n(v) dy’> dy dy dx

The derivation below makes no assumptions
about the shear rate dependence of the steady
shear viscosity, n(y), but three specific consti-
tutive equations are used in this study, the trun-
cated power law model (Eq 5), the Carreau
model (Eq 6), and the Wagner modification of
the rubber-like liquid. simplified for constant

shear (19) (Eq 7).
n-1
). (5)

2Y) = 7= + (10 — 7)[1 + AY"V2. (6)
N — § § fg)\:gt ] (7)
) = =gm (L )

All material parameters in the above equations
are determined by fitting experimental data.
The solution method uses an iterative tech-
nique to solve for the velocity and viscosity
fields alternately and separately. At each itera-
tion the viscosity and its gradient are assumed
given, i.e.. n(¥) becomes n(y). Equation 4 is dis-
cretized on a grid where each grid point corre-
sponds to a given streamfunction value y,. The
grid point positions are initially unknown and
must be solved for (iteratively) as part of the

(4)

n(v) = min(no. n° e
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solution algorithm. Figure 1 shows the geome-
try schematically for a two component flow and
a small sample set of grid points. The set of
streamlines is specified by fixing the values of
Y. The ¢, are chosen so that each unknown
interface corresponds to one of the given
streamfunction values. When all the streamline
positions are found (as described later) the in-
terfaces will be known as well, but at each
iteration they are assumed given at the latest
guesses. Thus, within the iteration at the point
of solving Eq 4 everything is “known” except
v(y) and dp/dx.

Each derivative in the differential equation
may be approximated by central differences on
the nonuniform grid:

(Vi1 — VY)Y — y«-:)’
dv ~ + (U — Vi) (Yirr — Y
dyl, (Y — Yy = Y)Y — Y1) )

8)

(Vi1 = V)Y = Ye1)
d% = (U = Vi—agynr — Yo

o~
-~

i, 2 .
dy® Y (Yrr = YY1 — Y-1)(Ye — Yi-1)

©

(me1 — 7)Y = y:-;)’
dn ~ + (9 = D) (Y1 — y)?
dyl, (Yyw — Y)Y — Y1 )(ye — Y1)

(10)

Equations 8 and 9 may be derived by fitting
a parabola through the three points (Y1, V1),
(Y, v). and (Y1, V1) and then taking deriva-
tives of the parabola. Equivalently, the equa-
tions may be derived in the classical way from
second order Taylor series approximations for
U1 and v, based at y,. Combining the two
series to eliminate the second derivative terms
gives Eq 8. Eliminating the first derivatives
yields Eq 9. Equation 10 is just Eq 8 with “v”
replaced by “»".

Substituting the finite difference formulas
(Eqs 8 and 9) into Eq 4 gives the equivalent

—Ly LLLL\
7

Fig. 1. Small sample streamlined finite difference grid
{lustrating the key variables and the geometry of the
flow. M=2:N=7.
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finite difference equation:
[nbe — diJui-r = [nac + by + ¢ — diJue

(11)
d
+[7)(a(+C1]U(+|='a_’i i=0-.--N.
The coefficients are
a = 2(y: — Yi-1)
‘ (Y1 — Y)Y — Y1)y — yl—l)'
b, = 2(yis1 — Yo
‘ (Yss — YY1 — Y)Yy — y:-n)'
)
Ylu (12)
( (y. — ya-x)? ) 7
(Yeer — Yy — Y1)y — Yi-1) )
and ’
_(dn
= (d_y y,)

( (Yter — yt)’ )
(Yer — YY1 — Y)Yt — Y1)/

Each viscosity, n,, is assumed given. In fact, the
viscosity on the grid points may be evaluated by
using the previously calculated velocity in a
central difference (Eq 8) for the shear rate, y(y)
= dv/dy, and substituting into Eq 5, 6, or 7 to
yield n(y). The derivatives dn/dy may be calcu-
lated from these known viscosities using Eq 10.
Note that for Newtonian flow dn/dy = ¢, =d; =
0. Also, for a uniform grid, a, = b, and ¢, = d..

On outer boundaries, i.e. the outer wall or the
inner side of a material interface a central dif-
ference can no longer be used. The appropriate
second-order difference formula for the velocity
gradient comes from a parabola fit through the
three points (yi v). (Yi-1. Vima)s (Yi-2. Ui2). The
resulting formula for dv/dy follows.

dv
dy

Y

_ (v = V=r){Yioy = Ye=2)(2Yt — Y1 = Yi-2) (13)
(Y = Y=1)(Yt = Y-2lYi1 — Yi-2)

_ (V-1 — Di-2)(Ye — ya-x)’ .
(Y. - Y1)yt — Yi-2)(Yi-1 — Yi-2)

On inner boundaries replace “t — 1" by “i + 17
and “i — 2" by “{ + 2" in the above equation.
These boundary finite difference approxima-
tions are needed not only to evaluate the shear
rate and viscosity, but to satisfy the boundary
condition at interfaces between rieighboring
fluids, A and B. The shear stress must be con-
tinuous across the interface (in the absence of
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surface tension gradients).

TxyA = TxyB- (14)
na dvs  dug
JaA_"Boyp, 15
1 dy dy (15}

Or. in finite difference form, taking phase A to
be the inner phase,

e[t
nB.i nB.i

+ [M aar — dB.'] v+ [asi + Bad Ui (16)

n8.i
= |Be.Vs2 = O;
=1l k=1..-M-1.
with
-1 — Yi-2)(2Y: ~ Yi-1 — Y-
an, = (Yi—1 — Y-2)(2Yt — Y1 — Yi-2) and

(Ut = Y1)yt = Ye-2)Yi-1 — Yi2)’
{y ~ y(—l)2

(Y = Yye-ilYe = Ye-o)Yi-1 = Yi-2)”

Again, replace “i — 1" by “{ + 1" and “i — 2" by

“i + 2" to get the formulas for ap, and 8g,.

The velocity field must also be continuous at
the fluid boundary. This is handled implicitly
by using only one value of v, at each interface.

So far we have left implicit the nondimension-
alization factors for the sequence of equations
presented. In fact, all of the above equations
keep the same form with dimensional or non-
dimensional variables. For numerical work it is
helpful to nondimensionalize all variables to
make them of the same order. Three character-
istic values are sufficient to nondimensionalize
all the variables used here: a characteristic
length, x, a characteristic velocity, ¥, and a
characteristic viscosity, 7. These are arbitrary,
but the authors choose the gap width of the slit
or annulus, the average velocity, and the vis-
cosity of the most viscous fluid evaluated at the
dimensionless shear rate, 0/x.

(17)

Bar=

SOLUTION METHOD

The equations as formulated above assume
that the pressure gradient dp/dx is given and
the velocity field is unknown. In the more com-
mon problem, the one to be solved here, the flow
rate within each layer is given and the pressure
gradient is unknown. The volume flow rate is
an integral of the velocity field (the subscript O
denotes the inner wall, N the outer).

Q=f v(y)dy. (18)

Yo

This equation could be added to the system of
finite difference equations by making a numer-
ical approximation to the integral (Simpson’s
rule, say) and moving dp/dx to the left side of
the equations as an additional unknown. How-
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ever, both the equation of motion and the
boundary conditions are linear in v (if n(y) is
assumed given). so it is possible to take the
pressure gradient as given at some nonzero
level, calculate the corresponding velocity field,
integrate for a calculated flow rate, and finally
scale the velocity field linearly to achieve the
desired flow rate. The pressure gradient will
also be scaled by the same factor.

This approach saves the expense of adding
an additional equation to the system (one which
depends on all the variables). In addition, this
idea of calculating the flow rate after solving
the system and then making appropriate cor-
rections may be extended as a method for mov-
ing the streamlines (including the interfaces) to
their correct positions. If ¥, is specified for a set
of streamlines then Eq 18 becomes an implicit
equation for y;.

1 W
¢,=—f v(y)dy; i=0-.--N. (19
9 Yuo
A rough algorithm based on the above ap-
proach is:

repeat
solve for the velocity field (Motion)
scale the velocity field for (Continuity)
the desired total flow
rate

scale the pressure (Motion)
gradient similary

calculate the viscosity (Constitutive)
field

move the streamlines for  (Continuity)

correct flow rates
between streamlines
until converged.

The above algorithm, as denoted to its right,
effectively separates the equation of motion (in-
cluding boundary conditions), the constitutive
equation, and the continuity equation in an
iterative procedure. The iteration is purely me-
chanical, not based on an actual time evolution;
only the converged steady state solution has
physical meaning. Figure 2 presents details of
the algorithm in flow chart form.

The primary step within each iteration is solv-
ing the system of difference equations (Eqs 11
and 16). This system is tridiagonal within each
layer, but the band width undesirably increases
to five for each interface grid point. A prelimi-
nary double Gauss elimination step at each
boundary reduces the entire matrix to a tridi-
agonal one. This is {llustrated schematically be-
low:

X X X X X X
XXXXX—> XXX (20)
1
X X X X X X

Taking this step allows the system to be solved
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Initialize:
Set desired values of
wx ., N, :l,l 1
Guess values of

)" ’ V* , dp/dx

A

( -
Calculate Viscosity, n, 2
(&n,/n, ati )

>——)—{ Solve FD eqns for v, 3]

L3

Y

[ Integrate v, for w‘ QJ

y

Scale v & dp/dx for 5
correct ¢. -1

Y

Calculate new n, & nA/n' 6]

Y

Interpolate on *1 for 7
new y

Y

Set y to weighted avg. |8
of new and old Y,

Interpolate on Y, for 9
new v,

o}

N

NO

[ Converged ?

YES

DONE

Fig. 2. Schematic flow chart of the streamlined finite
difference solution algorithm.

efficiently with the well-known Thomas algo-
rithm, e.g. (14), which is appropriate for diago-
nally dominant (in this case moderate viscosity
gradient) tridiagonal systems.

The main advantage of the algorithm is that
it converges on the needed values of y,, v,, and
7 simultaneously. The algorithm is fairly stable
with respect to a poor guess for the initial veloc-
ity field. (The authors start with the profile for
a single layer Newtonian flow). What is more
important is to choose a set of streamfunction
values, ¥, such that there is a fair number of
streamlines (at least 10; even more for steep
gradient areas) in every layer and such that
streamline spacing (y, — Y1) is reasonably uni-
form within each layer (to reduce inaccuracy in
the finite difference approximations). Because
the streamlines move at every iteration, a layer
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initially assigned ten streamlines will retain ten
streamlines. The streamlines will automatically
move where they are needed.

As it proceeds, the algorithm tends to oscillate
in its guess for y, at the interfaces, so some
damping is actually put into the update for y,
(step 8 of Fig. 2). A simple underrelaxation is
sufficient: ’

Y= olYio + (1 — 0)Yinews O0=w=1 (21)

The variable y; ..w is the value of y, that would
be obtained directly from the interpolation, with
no relaxation. Note that the smoothing step pre-
serves the ordering of the y,, y: < Yui1. A value
of w too high will result in overshooting of the
iterative step; a value too low will mean no
convergence. The algorithm therefore starts at
w = 0.5 and then adjusts » up or down (within
limits) depending on whether convergence
seems to be decelerating or accelerating. “Con-
vergence” in the algorithm means that v, y.,
and dp/dx have all settled to stable values.

RESULTS AND DISCUSSION

When reliable experimental data are avail-
able, simulations may be done for realistic fluid
models. Soskey (20) extensively characterized
samples of LDPE and PS. Figure 3 presents the
power law, Carreau, and Wagner viscosity func-
tions fit to his experimental data. The actual
material parameters are available in (20). Fig-
ure 4 presents a two-layer sheath/core pipe flow
of these two materials modeled with truncated
power laws, with Carreau models, and with vis-
coelastic models for both fluids. Table 1 pre-
sents corresponding values of interface posi-
tion, velocity, and viscosity ratio together with
the pressure gradient for each simulation. The
difference between fluid models is apparent.
The power law gives a flatter velocity profile.
The Carreau model smooths this out somewhat,

100000
PS
10000 ¥
) LDPE
o
&
=
1000 -
7=180°C .
loo a aasasad o aassaed 4 s e SRS aad asassad o o
0.001 0.01 0.1 1 10 100 1000
v (1/9)

Fig. 3. Viscosities of LDPE and PS at 180°C {Soskey,
1984) comparing truncated power law. Carreau, and
Wagner models.
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1.0

2]

0.5

/T

[ 2]
T = 180°C

i A

A a A A

1.0 - =
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

v/v
Fig. 4. Velocity profiles for flow of LDPE and PS at 180°C,
comparing power laufPL), Carreau(C). and Wagner(W)
model results.
Quoee/Qps = 1; F = 10 mm; b = 10 mm/s.

Table 1. Results Corresponding to the Flow of Fig. 4.

Interface "
Pressure Gradient
/¢ vV moee/nes  (dp/dx)/(n¥]F)
Power Law 0.511 0.371 0.161 -3.589
Carreau 0.509 0.389 0.197 -3.190
Wagner 0.507 0402 0.236 -2.319

F =10 mm; v = 10 mm/s; 4~ = 18025 Pa.s

and the Wagner model, which models the vis-
cosity at intermediate shear rates more closely,
rounds the profile even more. This rounding is
even more pronounced when the interface vis-
cosity ratio is higher.

Figure 6 shows the viscosity profiles corre-
sponding to Fig. 5. Here the disparity between
fluid models is clear, partly because the flow
was chosen so that most of the field fell in
intermediate shear rate ranges where the con-
stitutive models differ most. Truncating the
power law prevents what would have been a
very high viscosity ratio, but the ratio is still too
high (or its reciprocal too low). Table 1 also
shows that the pressure gradient can be af-
fected by the choice of constitutive model, some-
thing which is generally not true for single layer
flows. In comparison, the velocity and position
of the interface are relatively insensitive to the
choice of viscosity model.

For viscoelastic fluids a first normal stress
difference is observed even in simple shear
flow. With the Wagner model the first normal
stress coefficient can be calculated via an equa-
tion similar to Eq 7:

2

)

=1 =1 (1 + A,

2f¢gt)\:2

e %2

¥i(v) =
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0.0 1.0 2.0 3.0

n/n
Fig. 5. Viscostty profiles for the flow of Fig. 4. 7 = 18025
Pa-s.

1.0

PS

/T

1/ (v/x)
0.5

LDPE

0.0

-2.0 -1.0 0.0 1.0 2.0 3.0

Fig. 6. First normal stress difference, 1. — 7, and shear
rate profiles for the_ flow of Fig. 4.
7 = 18025 Pa; 0/f = 1.0

Figure 6 shows the first normal stress differ-
ence, g, — oy, calculated with this equation for
the flow of Fig. 4. Also shown is the shear rate,
4. Jumps in the normal stress difference as
observed here can cause instabilities in the
flow, depending on the geometry (21). The rea-
son is that the normal stress perpendicular to
the interface, o,,, must be continuous, so the
jump is actually a jump in the tension on the
interface, oy If this effect increases with cur-
vature then the flow is unstable. The method of
this paper could become a tool to predict inter-
face instabilities based on empirical observa-
tions of conditions when instabilities occur.

In coextrusion die design a common goal is to
minimize viscosity and normal stress jumps
across layers in order to avoid instabilities. For
this purpose the power law clearly gives un-
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realistic results. The calculated viscosity jump
is either too huge to be realistic or is artificial
because of truncation.

As an example of how the method could be
applied to a multilayer flow more typical of com-
mercial applications, Figure 7 presents a seven
layer planar flow in which thick polymer layers
partially alternate with thin tie layers. Figure 8
presents the viscosity profile corresponding to
Fig. 7. The tie layers are Newtonian; the other
layers are various Carreau fluids. The flow
shown is purely arbitrary, but similar, more
realistic flows could be easily modeled, given
accurate material parameters.

Multi-layer flows are not limited to Poiseuille
flows. Figure 9 presents a two-layer wire coat-
ing flow which is both drag and pressure driven.

1.0

0.75

v/v
Fig. 7. Veloclty profile for a hypothetical nine layer flow
of vartous Carreau fluids. Relattvely thick low viscosity

tie layers separate polymer layers, illustrating the power
of the method for practical use.

1.0

y/y

iy

0.25

S

o_o A A " " A. 5 A " A A A A A A
0.0 0.2 04 06 08 10 1.2 1.4 1.6

n/n
Fig. 8. Viscosity profile for the flow of Fig. 7.
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0.85 |}
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o‘a ................... A h &

v/\_r

Fig. 9. Velocity profile for a wire coating flow of two
power law fluids.

A= Ln®=1; n=04;n=10% Q.0 =03

B: 4°=1; 1° = 10; n = 0.3; 5o = 10°% Qg/Q = 0.07

This flow is for two simple power law fluids.
Normally the power law must be truncated in
numerical work to avoid machine overflow.
However, the wire coating flow of Fig. 9 has no
zero shear rate point, so the truncation, if high
enough, becomes irrelevant, and a comparison

‘with semi-analytical results becomes possible.

In fact Fig. 9 plots both the numerically calcu-
lated profile and the semi-analytical profile cal-
culated by the shooting procedure described in
the Introduction. The two are virtually indistin-
guishable. The numerical procedure gives a
slightly lower interface velocity, but pressure
gradients and interface positions are identical
for the two methods.

CONCLUSIONS

The numerical method we have described ef-
ficiently solves fully developed multilayer non-
Newtonian shear flows for fluids with realistic
shear viscosity constitutive equations. For the
power law results can be favorably checked
against an analytical solution. However, the
power law, though sufficient for predicting
pressure gradients and interface positions,
gives unrealistically flat velocity profiles even
when numerically truncated at finite viscosity.
For the die designer’s common task of trying to
match viscosities at interfaces (through temper-
ature control) the power law is clearly useless.

This step of viscosity matching is most im-
portant in areas of high stress. Near the center
of the flow viscosity jumps have smaller effects
on the velocity profile and shear rate (e.g., Fig.
5). In viscoelastic polymers shear rate jumps
can cause corresponding jumps in the first nor-
mal stress difference across interfaces. For dis-
similar materials this normal stress difference
jump can be extreme and is the cause of insta-

POLYMER ENGINEERING AND SCIENCE, MID-APRIL, 1988, Vol. 28, No. 7



Fully Developed Multtlayer Polymer Flows in Slits and Annuli

bilities in the flow. The present method could
become a numerical tool for studying the onset
of instability for fluids with complicated rheo-
logical behavior.

The ability to specify the viscosity numeri-
cally, separately from the equation of motion,
makes the fully developed streamlined finite
difference method an appropriate building
block for studying nearly fully developed mul-
tilayer flows. These include lubrication flows,
developing nonisothermal flows, and narrow
channel distribution flows. Work in these areas
is in progress.
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APPENDIX; AXISYMMETRIC FLOW FINITE
DIFFERENCE EQUATIONS

This section parallels the derivation for
planar flow in the body. Equation numbers cor-
respond to those in the earlier section.

For axisymmetric flow the equation of motion
is

l1d dp

T ar (rrrz) = a4z (A.1)

The shear stress is again that of a purely vis-
cous fluid:

- dv
=) (A2)
Substituting gives
1d(_ . dv\_dp
rdr (rn('y) dr) T dz’ (A.3)

Expanding the derivatives gives

adv o dv dudn_dp
Lt S+ . (A4)

With central differences for the derivatives the
above equation can be expressed in difference
form:

[7b, — djviy — [na + by + ¢, — diJu,
d A.ll
+['llal+ctlvl+l=_‘p: i=0-... ( )
dx

The coefficients are now

a, = 2("4 - Ti-1)
T (P = F)re = o) — 1)’
b, = 2(r — )

B {riey — rd(risr — r=a)(re — rl—l)'

POLYMER ENGINEERING AND SCIENCE, MID-APRIL., 1988, Vol. 28, No. 7

__(an|
b= (dr i} + r‘)
(re = ra)®
((rﬁ-l — ) rw: = r=1)(r — r'_l)>. (A.12)
and
_fan| |
d‘ - (dr 1] * rl)

( (rea — r)? )
(rer = r)ry — na)(re = 1) '

All other equations in the text, including the
finite difference formulas (Egs 8 to 10) and the
relations describing interface boundaries (Eqs
14 to 17) may be used as is except that “y”
becomes “r” and “x” becomes “z”. The only other
equation that changes form is the flow rate
calculation within the solution algorithm. It is
now

¢,=é—f'rv(r)dr; i=0---N. (A.19)

NOMENCLATURE

Finite difference equation coeffi-

cients (motion).

Strain functional parameters.

Spectrum of viscoelastic moduli.

(Subscript) streamline number.

(Subscript) interface number.

Number of time constants in vis-

coelastic spectrum. '

Number of layers.

Power law index.

Strain functional parameters.

Total number of streamlines.

Pressure.

Total volume flow rate.

Coordinate perpendicular to an-

nular flow.

Velocity.

Coordinate parallel to planar flow.

Coordinate perpendicular to pla-

nar flow.

= Coordinate parallel to annular
flow.

aa, ap = Finite difference equation coeffi-

Ba. Bs cients (B.C.).

Shear rate.

Power law reference shear rate.

Viscosity.

Zero shear rate viscosity.

Infinite shear rate viscosity.

Power law reference viscosity.

Shear stress.

First normal stress difference.

Normalized streamfunction value

for streamline {.

¥, = First normal stress coefficient,

(0xx = oyy)/7-

ab,c,d =

TPUZ3ISE IA~O>

T 1 O

o xc
nmwn

<R N
|

o

S8 3

o

=

L]

Txy OF Trz

=
g nwnan

Txx — Oyy
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= Weighting coefficient for damped
iteration. :
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